

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

watchmaker

Applied Configuration Management

Overview

Watchmaker is intended to help provision a system from its initial installation
to its final configuration. It was inspired by a desire to eliminate static
system images with embedded configuration settings (e.g. gold disks) and the
pain associated with maintaining them.

Watchmaker works as a sort of task runner. It consists of “managers” and
“workers”. A manager implements common methods for multiple platforms
(Linux, Windows, etc). A worker exposes functionality to a user that helps
bootstrap and configure the system. Managers are primarily internal
constructs; workers expose configuration artifacts to users. Watchmaker then
uses a common configuration file to determine what
workers to execute on each platform.

Contents

	Installation

	Configuration

	Usage

	Troubleshooting Guidance

	Common Scan Findings

	Supported SCAP Benchmarks

	Frequently Asked Questions

	API Reference

	Contributing

	Changelog

Supported Operating Systems

	Enterprise Linux 8 (RHEL/CentOS Stream/Oracle Linux)

	Enterprise Linux 7 (RHEL/CentOS)

	Windows Server 2019

	Windows Server 2016

	Windows Server 2012 R2

	Windows 10

	Windows 8.1

Supported Python Versions

	Python 3.6 and later

	Python 2.7 and later

Supported Salt Versions

	Salt 2018.3, from 2018.3.4 and later

	Salt 2019.2, from 2019.2.5 and later

	Salt 300x, from 3003 and later

 Installation

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Installation

From Python Package Index

The preferred method to install watchmaker is from the Python Package Index
(PyPi), using pip [https://pip.pypa.io/en/stable/]. Without any other options, this will always install
the most recent stable release.

python3 -m pip install watchmaker

If you do not have Python or pip [https://pip.pypa.io/en/stable/], this Python installation guide [https://python-guide.readthedocs.io/en/latest/starting/installation/]
can guide you through the process.

Note

Versions 10 and later of pip do not support Python 2.6. On CentOS 6 and
RHEL 6, Python 2.6 is the system version of Python. If you are using Python
2.6 with watchmaker, you will need to restrict the pip install such
that a version earlier than 10 is installed. See the relevant question in
the [FAQ](faq.html) for more details.

From source

Watchmaker can also be built and installed from source, using git and pip.
The source for watchmaker are available from the GitHub repo [https://github.com/plus3it/watchmaker].

	First clone the public repository to pull the code to your local machine:

git clone https://github.com/plus3it/watchmaker.git --recursive && cd watchmaker

This project uses submodules, so it’s easiest to use the --recursive
flag, as above. If you don’t, you will need to pull in the submodules as
well:

git submodule update --init --recursive

	If you want to install a specific branch or tag, check it out before
installing Watchmaker:

git checkout <branch-tag-foo>

	Then you can install Watchmaker:

python3 -m pip install .

From standalone executable

Watchmaker can also be downloaded and executed in an all-in-one package containing
Watchmaker’s dependencies, such as Python and necessary Python packages. Packages
are available for Windows and Linux.

	Retrieve the Watchmaker standalone package for your desired platform from
GitHub Releases or the Cloudarmor repo [https://watchmaker.cloudarmor.io/list.html].

	GitHub Releases [https://github.com/plus3it/watchmaker/releases/] shows the available Watchmaker versions and includes
links to the Windows and Linux packages, and their SHA256 hashes.

	The latest release [https://github.com/plus3it/watchmaker/releases/latest/] can also be directly accessed on GitHub:

	https://github.com/plus3it/watchmaker/releases/latest/

	The Cloudarmor repo [https://watchmaker.cloudarmor.io/list.html] also contains versioned Watchmaker packages
and corresponding SHA256 hashes. You can browse the repo [https://watchmaker.cloudarmor.io/list.html], or construct
the URL to the files using these patterns:

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-standalone-linux-x86_64

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-sha256-linux-x86_64.json

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-standalone-windows-amd64.exe

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-sha256-windows-amd64.json

	The latest release [https://watchmaker.cloudarmor.io/list.html#releases/latest/] is always available on the Cloudarmor repo at these
URLs:

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-linux-x86_64

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-sha256-linux-x86_64.json

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-windows-amd64.exe

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-sha256-windows-amd64.json

	From PowerShell, the Windows package can be downloaded as follows:

PS C:\wam> $url = "https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-windows-amd64.exe"
PS C:\wam> (New-Object System.Net.WebClient).DownloadFile($url, "watchmaker.exe")

	From the command line, the Linux package can be downloaded as follows:

curl -so watchmaker https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-linux-x86_64

	For the latest package, the version of Watchmaker can be determined by
viewing the contents of the SHA256 hash file or by executing the package
with the --version flag.

	Verify the integrity of the standalone package.

Compare the SHA256 hash contained in the downloaded hash file to a hash you
compute for the package.

For Linux, execute this command to compute the SHA256 hash:

shasum -a 256 watchmaker-latest-standalone-linux-x86_64

For Windows, execute this command to compute the SHA256 hash:

PS C:\wam> Get-FileHash watchmaker-latest-standalone-windows-amd64.exe | Format-List

	Set executable access permission.

For Linux, you will need to set the access permissions to allow the standalone
executable to run. Below is an example:

chmod +x watchmaker-latest-standalone-linux-x86_64

Prerequisites for features specific to AWS and Azure

Watchmaker has some features specific to AWS and Azure:

* AWS:
 * Download files in config references from Amazon S3
 * Tag Amazon EC2 instances with Watchmaker status
* Azure:
 * Tag Azure Virtual Machines with Watchmaker status

If you are using the source install from PyPi, and if your config uses any of those
features, be sure to also install the SDKs those features are built on. If you are
using the standalone package, these dependencies are part of the package and no
further action or install is needed.

For AWS features, install the boto3 library:

python3 pip -m install boto3

For Azure features, install the azure libraries:

python3 pip -m install azure-core azure-identity azure-mgmt-resource

 Configuration

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Configuration

Watchmaker is configured using a YAML [https://yaml.org/spec/1.2/spec.html] file. Watchmaker’s default
config.yaml [https://github.com/plus3it/watchmaker/blob/main/src/watchmaker/static/config.yaml] file should work out-of-the-box for most systems and
environments. You can also use it as an example to create your own
configuration file. The default config file will install Salt and use the
bundled Salt formulas to harden the system according to the DISA STIG.

The configuration is a dictionary. The parent nodes (keys) are: all, linux,
or windows. The parent nodes contain a list of workers to execute, and each
worker contains parameters specific to that worker. The all node is applied
to every system, and linux and windows are applied only to their respective
systems.

You can create a file using the above format with your own set of standard
values and use that file for Watchmaker. Pass the CLI parameter --config to
point to that file.

Configuration Precedence

In addition to passing values in the configuration file, watchmaker supports
passing arguments on the cli. The order of precedence for arguments is,
from least to most:

	configuration file

	cli argument

In other words, providing a value as a cli argument will override the same value
provided in the configuration file.

config.yaml Parent Nodes

watchmaker_version

If used, this optional node constrains the version of Watchmaker that can be used with the configuration. The watchmaker_version node is recommended for all configurations used with versions of Watchmaker 0.17+.

This is an example of using the watchmaker_version node:

watchmaker_version: "== 0.17.0"

Any PEP440-compatible version specifier [https://www.python.org/dev/peps/pep-0440/#version-specifiers] can be used in the watchmaker_version node. Each version clause should include a comparison operator, such as ~=, ==, !=, <=, >=, <, >, or ===. Multiple clauses can be included, separated by commas. Below are examples of version specifiers.

watchmaker_version: "~= 0.17.0"
watchmaker_version: "> 0.16.5"
watchmaker_version: ">= 0.17.0, <= 0.18.9, != 0.17.2"

Attempting to use a configuration with an incompatible version of Watchmaker will result in an error.

all

Section for Worker configurations that affect the deployment of all platforms.
The all section will override parameters that are set in the OS-specific
sections of config.yaml.

linux

Section for Worker configurations that should only be applied to Linux-based
systems.

windows

Section for Worker configurations that should only be applied to Windows-based
systems.

status

Watchmaker supports posting the watchmaker status to status providers. Watchmaker status values are one of: ‘Running’, ‘Failed’, or ‘Completed’. Each status provider defines what it means to “post the status”. Currently, the supported provider types include: ‘aws’ and ‘azure’. These status providers both post the status as a tag to the instance/VM.

Providers have the ability to detect whether the system is compatible with the
provider type. In order to post status, the system running watchmaker must be compatible
with the status provider type. For example, the ‘azure’ provider will be skipped
when watchmaker is running on an AWS EC2 instance, and vice versa.

See the installation page for prerequisites for using this feature.

	IAM Role and Policy An AWS Role and Policy that allows the instance to create tags must be attached to the instance. The minimal policy below has been tested in commercial and govcloud.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:<PARTITION>:ec2:<REGION>:<ACCOUNT_ID>:instance/${ec2:InstanceID}",
 "Condition": {
 "StringLike": {
 "ec2:SourceInstanceARN": "arn:<PARTITION>:ec2:<REGION>:<ACCOUNT_ID>:instance/${ec2:InstanceID}"
 }
 }
 }
]
}

	Policy Policy that allows adding or replacing tag on resource see Microsoft Azure Tag Policy [https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/tag-policies] for more info.

Note

Note: Support for the ‘azure’ status provider is provisional. If you use it and encounter problems, please open an issue on the GitHub repository!

Parameters supported by status

	providers ((list of maps)): List of providers

	key (string): Status key to use e.g. WatchmakerStatus

	required (boolean): Required status, when True and provider_type is detected, watchmaker raises an error if unable to update status

	provider_type (string): Environment provider type e.g. aws or azure

Example:

status:
 providers:
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'aws'
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'azure'

Config.yaml Worker Nodes

Watchmaker includes the workers listed below. See the corresponding sections
for details on their configuration parameters.

	salt

	yum (linux-only)

salt worker

Parameters supported by the Salt Worker:

	admin_groups (list): The group(s) that you would like the admin accounts
placed within.

	admin_users (list): The user(s) that would be created as admins.

	computer_name (string): The computer or hostname that should be applied.

	environment (string): Set for the environment in which the system is
being built.

	valid_environments (list): The list of environments considered valid
for the environment parameter.

	ou_path (string): Specifies the full DN of the OU where the computer
account will be created when joining a domain.

ou_path: "OU=Super Cool App,DC=example,DC=com"

	pip_install (list): The Python package(s) that formulas require.

pip_install:
 - hvac
 - numpy

	pip_args (list): Options to pass to salt pip.install when installing python packages. See the salt docs [https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.pip.html#salt.modules.pip.install] for all options.

linux:
 - salt:
 pip_args:
 - pre_releases=True

	pip_index (string): Base URL of Python Package Index.

	salt_states (string, comma-separated): User-defined salt states to
apply.

salt_states: highstate,foo,bar

	exclude_states (string, comma-separated): States to exclude from
execution of salt states.

	user_formulas (dict): Map of formula names and URLs to zip archives of
salt formulas. These formulas will be downloaded, extracted, and added to
the salt file roots. The zip archive must contain a top-level directory
that, itself, contains the actual salt formula. To “overwrite” bundled
submodule formulas, make sure the formula name matches the submodule name.

user_formulas:
 foo-formula: https://path/to/foo.zip

	salt_debug_log (string): Path to the debug logfile that salt will write
to.

	salt_content (string): URL to the Salt content file that contains
further configuration specific to the salt install.

	salt_content_path (string): The path within the Salt content file
specified using salt_content where salt files are located.
Can be used to provide the path within the archive file where
the Salt configuration files are located.

	install_method (string): (Linux-only) The method used to install Salt.
Currently supports: yum, git

	bootstrap_source (string): (Linux-only) URL to the salt bootstrap
script. This is required if install_method is set to git.

	git_repo (string): (Linux-only) URL to the salt git repo. This is
required if install_method is set to git.

	salt_version (string): (Linux-only) A git reference present in
git_repo, such as a commit or a tag. If not specifid, the HEAD of the
default branch will be used.

	installer_url (string): (Windows-only) URL to the Salt Minion installer
for Windows.

yum worker (linux-only)

Parameters supported by the Yum Worker:

	repo_map (list of maps): There be dragons here! Please be careful making
changes to the default config. Thoroughly test your configuration. The
default config specifies yum repos that contain the salt-minion. If the
default repos are not included, and the salt-minion is not available, the
Salt Worker will fail. You can add repos here that you would like enabled,
but be wary of removing the default repos. Each map must contain the
following keys:

	dist (list): Distributions that would install this repo. Some repos
are supported by multiple distros. (Currently supported distros are
redhat, centos, and amazon.)

	el_version (_string_): The Enterprise Linux version for this repo,
as in el6 or el7. Expected values are '6' or '7'.

	url (string): URL location of the repo file to be added to the
system. This file will be copied to /etc/yum.repos.d/

Example:

repo_map:
 - dist:
 - redhat
 - centos
 el_version: 6
 url: http://someplace.com/my.repo

Downloading config files from Amazon S3

Watchmaker has support for downloading files from Amazon S3. This is useful for
implementations where parts of the Watchmaker config are hosted privately. In order
to use this feature, be sure the necessary prerequisites are installed (see the
installation page).

This feature simply uses the “S3 URL” of the object in the S3 bucket. Such URLs
take the form: s3://<bucket>/<key>. For example, if you wanted to host a custom
config and custom salt content, you could include the salt-content S3 URL in your
Watchmaker config:

all:
 - salt:
 salt_content: s3://path/to/salt-content.zip

And then call Watchmaker on the CLI with the --config argument:

watchmaker --config s3://path/to/config.yaml

Example config.yaml

This example can be used to construct your own config.yaml file. The
Cloudarmor repo [https://watchmaker.cloudarmor.io/list.html] provides yum repo definitions and installers for a few salt
versions.

watchmaker_version: ">= 0.24.0.dev"
all:
 - salt:
 admin_groups: null
 admin_users: null
 computer_name: null
 environment: null
 ou_path: null
 salt_content: null
 salt_states: Highstate
 user_formulas:
 # To add extra formulas, specify them as a map of
 # <formula_name>: <archive_url>
 # The <formula_name> is the name of the directory in the salt file_root
 # where the formula will be placed. The <archive_url> must be a zip
 # file, and the zip must contain a top-level directory that, itself,
 # contains the actual salt formula. To "overwrite" submodule formulas,
 # make sure <formula_name> matches submodule names. E.g.:
 #ash-linux-formula: https://s3.amazonaws.com/salt-formulas/ash-linux-formula-master.zip
 #scap-formula: https://s3.amazonaws.com/salt-formulas/scap-formula-master.zip

linux:
 - yum:
 repo_map:
 #SaltEL6:
 - dist:
 - redhat
 - centos
 el_version: 6
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/2019.2.8/salt-reposync-el6.repo
 - dist: amazon
 el_version: 6
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/2019.2.8/salt-reposync-amzn.repo
 #SaltEL7:
 - dist:
 - redhat
 - centos
 el_version: 7
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/3004.2/salt-reposync-el7-python3.repo
 - salt:
 salt_debug_log: null
 install_method: yum
 bootstrap_source: null
 git_repo: null
 salt_version: null

windows:
 - salt:
 salt_debug_log: null
 installer_url: https://watchmaker.cloudarmor.io/repo/saltstack/salt/windows/Salt-Minion-3004.2-1-Py3-AMD64-Setup.exe

status:
 providers:
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'aws'
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'azure'

 Usage

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Usage

watchmaker from the CLI

Once Watchmaker is installed and a
configuration file has been created (or you have decided
to use the default configuration), using Watchmaker as a CLI utility is as
simple as executing watchmaker. Below is the output of watchmaker --help,
showing the CLI options.

In addition to the below options, any setting supported by the configfiguration file
can be passed on the CLI. Some settings from the configuration file are not listed
in the --help output, which displays only the most frequently used options. To
pass any such “hidden” CLI argument, just precede it with -- and convert an
underscore to a dash. For example, to pass the salt_content argument on the CLI,
use watchmaker <other options> --salt-content <content-url>. Arguments passed
on the CLI always override the corresponding setting in the configuration file
(see configuration for precedence).

watchmaker --help
Usage: watchmaker [OPTIONS]

 Entry point for Watchmaker cli.

Options:
 --version Show the version and exit.
 -c, --config TEXT Path or URL to the config.yaml file.
 -l, --log-level [info|debug|critical|warning|error]
 Set the log level. Case-insensitive.
 -d, --log-dir DIRECTORY Path to the directory where Watchmaker log
 files will be saved.
 -n, --no-reboot If this flag is not passed, Watchmaker will
 reboot the system upon success. This flag
 suppresses that behavior. Watchmaker
 suppresses the reboot automatically if it
 encounters a failure.
 -s, --salt-states TEXT Comma-separated string of salt states to
 apply. A value of 'None' will not apply any
 salt states. A value of 'Highstate' will
 apply the salt highstate.
 -A, --admin-groups TEXT Set a salt grain that specifies the domain
 groups that should have root privileges on
 Linux or admin privileges on Windows. Value
 must be a colon-separated string. E.g.
 "group1:group2"
 -a, --admin-users TEXT Set a salt grain that specifies the domain
 users that should have root privileges on
 Linux or admin privileges on Windows. Value
 must be a colon-separated string. E.g.
 "user1:user2"
 -t, --computer-name TEXT Set a salt grain that specifies the
 computername to apply to the system.
 -e, --env TEXT Set a salt grain that specifies the
 environment in which the system is being
 built. E.g. dev, test, or prod
 -p, --ou-path TEXT Set a salt grain that specifies the full DN
 of the OU where the computer account will be
 created when joining a domain. E.g.
 "OU=SuperCoolApp,DC=example,DC=com"
 --help Show this message and exit.

Note: The -c/--config switch supports the use of s3:// URLs. However, in order for such URLs to be treated as valid, it will be necessary to include the boto3 Python module: if leveraging userData for either Windows or Linux (as below), include it on the same pip install line used to install watchmaker; if executing interactively (or by other non userData means), ensure that the relevant system-preparation processes performed to install watchmaker also include installation of the boto3 module prior to invoking the watchmaker utility. Failure to ensure presence of the boto3 Python module when referencing s3:// URIs will result in logged-failures similar to:

2023-06-22 14:26:59,192 [backoff][INFO][4908]: Backing off urlopen_retry(...) for 0.6s (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [backoff][ERROR][4908]: Giving up urlopen_retry(...) after 5 tries (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [watchmaker.config][CRITICAL][4908]: Could not read config file from the provided value "s3://<BUKKIT>/<PREFIX>/config.yaml"! Check that the config is available.

watchmaker as a standalone package (Beta feature)

Standalone packages are a beta feature and may not function in all
environments.

Once a Watchmaker standalone executable has been
downloaded and a
configuration file has been created (or you have decided
to use the default configuration), use Watchmaker similarly to the CLI
utility.

For example, on Linux, you can view the CLI options (shown above) using
the same flag.

./watchmaker --help

From Windows, similarly, execute Watchmaker by running it from the command line:

PS C:\wam> watchmaker.exe --help

watchmaker in AWS

watchmaker as EC2 userdata

Calling Watchmaker via EC2 userdata is a variation on using it as a CLI
utility. The main difference is that you must account for installing Watchmaker
first, as part of the userdata. Since the userdata syntax and dependency
installation differ a bit on Linux and Windows, we provide methods for each as
examples.

Note

The pip commands in the examples are a bit more complex than
necessarily needed, depending on your use case. In these examples, we are
taking into account limitations in FIPS support in the default PyPi repo.
This way the same pip command works for all platforms.

Linux

For Linux, you must ensure pip is installed, and then you can install
watchmaker from PyPi. After that, run watchmaker using any option available
on the CLI. Here is an example:

#!/bin/sh
PYPI_URL=https://pypi.org/simple

Setup terminal support for UTF-8
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8

Install pip
python3 -m ensurepip

Install setup dependencies
python3 -m pip install --index-url="$PYPI_URL" --upgrade pip setuptools

Install Watchmaker
python3 -m pip install --index-url="$PYPI_URL" --upgrade watchmaker

Run Watchmaker
watchmaker --log-level debug --log-dir=/var/log/watchmaker

Alternatively, cloud-config directives can also be used on Linux:

#cloud-config

runcmd:
 - |
 PYPI_URL=https://pypi.org/simple

 # Setup terminal support for UTF-8
 export LC_ALL=en_US.UTF-8
 export LANG=en_US.UTF-8

 # Install pip
 python3 -m ensurepip

 # Install setup dependencies
 python3 -m pip install --index-url="$PYPI_URL" --upgrade pip setuptools

 # Install Watchmaker
 python3 -m pip install --index-url="$PYPI_URL" --upgrade watchmaker

 # Run Watchmaker
 watchmaker --log-level debug --log-dir=/var/log/watchmaker

Windows

For Windows, the first step is to install Python. Watchmaker provides a
simple bootstrap script to do that for you. After installing Python, install
watchmaker using pip and then run it.

<powershell>
$BootstrapUrl = "https://watchmaker.cloudarmor.io/releases/latest/watchmaker-bootstrap.ps1"
$PythonUrl = "https://www.python.org/ftp/python/3.10.11/python-3.10.11-amd64.exe"
$PypiUrl = "https://pypi.org/simple"

Use TLS 1.2+
[Net.ServicePointManager]::SecurityProtocol = "Tls12, Tls13"

Download bootstrap file
$BootstrapFile = "${Env:Temp}\$(${BootstrapUrl}.split('/')[-1])"
(New-Object System.Net.WebClient).DownloadFile("$BootstrapUrl", "$BootstrapFile")

Install python
& "$BootstrapFile" -PythonUrl "$PythonUrl" -Verbose -ErrorAction Stop

Install Watchmaker
python -m pip install --index-url="$PypiUrl" --upgrade pip setuptools
python -m pip install --index-url="$PypiUrl" --upgrade watchmaker

Run Watchmaker
watchmaker --log-level debug --log-dir=C:\Watchmaker\Logs
</powershell>

watchmaker as a CloudFormation template

Watchmaker can be integrated into a CloudFormation template as well. This
project provides a handful of CloudFormation templates that launch instances or
create autoscaling groups, and that install and execute Watchmaker during the
launch. These templates are intended as examples for you to modify and extend
as you need.

Sometimes it is helpful to define the parameters for a template in a file, and
pass those to CloudFormation along with the template. We call those “parameter
maps”, and provide one for each of the CFN templates.

Cloudformation templates

	Linux Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-autoscale]

	Linux Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-instance]

	Windows Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-autoscale]

	Windows Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-instance]

watchmaker in a Terraform module

Watchmaker can also be used with Terraform [https://www.terraform.io/] by
utilizing the Watchmaker AWS Terraform modules [https://github.com/plus3it/terraform-aws-watchmaker]
and passing the required parameters.

Terraform Modules

	Linux Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-autoscale]

	Linux Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-instance]

	Windows Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-autoscale]

	Windows Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-instance]

Note

Each corresponding Terraform module and CloudFormation template are
grouped together in the same directory.

The CloudFormation templates are integrated within their respective Terraform
module, so they become deployable and manageable from within the Terraform cli.

Variables can be input interactively via the Terraform console or directly to
the Terraform module. An example Terraform file that calls the lx-autoscale
module is shown below.

provider "aws" {}

module "test-lx-instance" {
 source = "git::https://github.com/plus3it/terraform-aws-watchmaker//modules/lx-instance/"

 Name = "tf-watchmaker-lx-autoscale"
 AmiId = "__AMIID__"
 AmiDistro = "__AMIDISTRO__"
}

Additional Watchmaker Terraform examples

	Linux Autoscale Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/lx-autoscale]

	Linux Instance Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/lx-instance]

	Windows Autoscale Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/win-autoscale]

	Windows Instance Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/win-instance]

watchmaker in Azure

watchmaker as Custom Script Extension

Custom Script Extension downloads and executes scripts on Azure virtual
machines. For Linux, you run the bash script shown in the section on
Linux. You can store the bash script in Azure Storage or a publicly
available url (such as with S3). Then you execute the stored script with a
command. For example, a JSON string could contain

{
 "fileUris": ["https://path-to-bash-script/run_watchmaker.sh"],
 "commandToExecute": "./run_watchmaker.sh"
}

These parameters can be passed in via Azure CLI or within a Resource Management
Template. For more in-depth information, see Microsoft’s
documentation on Linux [https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-linux].

For Windows, you would execute a PowerShell script in a similar manner as for
Windows (but without the powershell tags). Then you would have the
following parameters:

{
 "fileUris": ["https://path-to-bash-script/run_watchmaker.ps1"],
 "commandToExecute": "powershell -ExecutionPolicy Unrestricted -File run_watchmaker.ps1"
}

For more in-depth information on using Custom Script Extension for Windows, see
Microsoft’s documentation on Windows [https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-windows].

watchmaker as a library

Watchmaker can also be used as a library, as part of another python
application.

import watchmaker

arguments = watchmaker.Arguments()
arguments.config_path = None
arguments.no_reboot = False
arguments.salt_states = None

client = watchhmaker.Client(arguments)
client.install()

Note

This demonstrates only a few of the arguments that are available for the
watchmaker.Arguments() object. For details on all arguments, see the
API Reference.

 Troubleshooting Guidance

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Troubleshooting Guidance

Troubleshooting Watchmaker activities can be done by checking various system logs. Logfile locations vary by OS and may vary by OS-version and cloud-provider. The per-OS, logfile discussions assume that you have executed Watchmaker per the relevant OSes’ direct-usage guidance:

	Linux Log-Files

	Windows Log-Files

 Linux Log-Files

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Linux Log-Files

The logfiles to pay most attention to when running Watchmaker on Enterprise Linux distros (Red Hat, CentOS, Oracle Enterprise, etc.) are as follows:

	The /var/log/watchmaker/watchmaker.log Log-File

	The /var/log/watchmaker/salt_call.debug.log Log-File

	The /var/log/messages Log-File

	The /var/log/cloud-init.log Log-File

	The /var/log/cloud-init-output.log Log-File

The above are specifed in the order most-frequently used to determine execution issues.

Note that the troubleshooting discussions assume that watchmaker execution has been effected directly through the cloud-init service. If watchmaker is being executed by other means, the above files may have no relevance to issues encountered running watchmaker (the cloud-init.log and cloud-init-output.log), may not exist in the documented-locations (salt_call.debug.log and watchmaker.log) and may not even exist at all (watchmaker.log).

 The /var/log/watchmaker/watchmaker.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/watchmaker/watchmaker.log Log-File

This file tracks the top-level execution of the watchmaker configuration-utility. This file should always exist, unless:

	The provisioning-administrator has checked for the log before the utility has been downloaded and an execution-attempted. This typically happens if a watchmaker-execution is attempted late in a complex provisioning-process

	An execution-attempt wholly failed. In this case, check the logs for the watchmaker-calling service or process (e.g. cloud-init)

	The provisioning-administrator has not invoked watchmaker in accordance with the watchmaker project’s usage-guidance: if a different logging-location was specified (e.g., by adding a flag/argument like --log-dir=/tmp/watchmaker), the provisioning-administrator would need to check the alternately-specified logging-location.

	The provisioning-administrator invoked the watchmaker-managed content directly (e.g., using salt-call -c /srv/watchmaker/salt). In this scenario, only the content-execution may have been logged (whether logging was captured and where would depend on how the direct-execution was requested).

Typical Errors

	Bad specification of remotely-hosted configuration file. This will typically come with an HTTP 404 error similar to:

botocore.exceptions.ClientError: An error occurred (404) when calling the HeadObject operation: Not Found

Ensure that the requested URI for the remotely-hosted configuration file is valid.

	Attempt to use a protected, remotely-hosted configuration-file. This will typically come win an HTTP 403 error. Most typically, this happens when the requested configuration-file exists on a protected network share and the requesting-process doesn’t have permission to access it.

botocore.exceptions.ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden

Ensure that watchmaker has adequate permissions to access the requested, remotely-hosted configuration file.

	Remotely-hosted configuration file is specified as an s3:// URI without installation of boto3 Python module. This will typically come with an error similar to:

2023-06-22 14:26:59,192 [backoff][INFO][4908]: Backing off urlopen_retry(...) for 0.6s (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [backoff][ERROR][4908]: Giving up urlopen_retry(...) after 5 tries (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [watchmaker.config][CRITICAL][4908]: Could not read config file from the provided value "s3://<BUKKIT>/<PREFIX>/config.yaml"! Check that the config is available.

Ensure that the boto3 Python module has been installed prior to attempting to execute watchmaker

 The /var/log/watchmaker/salt_call.debug.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/watchmaker/salt_call.debug.log Log-File

This is the log-file that captures the bulk of the SaltStack-related state-output. This file gets created when watchmaker has been able to successfully download all of its execution information. This file gets created shortly after this line appears in the /var/log/watchmaker/watchmaker.log file:

2023-06-15 11:13:27,378 [watchmaker.workers.base.SaltLinux][DEBUG][6407]: Command: /usr/bin/salt-call --local --retcode-passthrough --no-color --config-dir /opt/watchmaker/salt --log-file /var/log/watchmaker/salt_call.debug.log --log-file-level debug --log-level error --out quiet --return local state.highstate

Typically, the only errors that will appear here are the results of errors in the SaltStack formulae for the standard integrations. To see which modules may get logged into this file, look at the contents of the /srv/watchmaker/salt/formulas/ directory and then cross-reference those directories against the contents of the /srv/watchmaker/salt/states/top.sls file. To help interpret, a typical top.sls file’s contents is offered:

{%- set environments = ['dev', 'test', 'prod', 'dx'] %}

base:
 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
{%- if salt.grains.get('watchmaker:enterprise_environment') | lower in environments %}
 - join-domain
 - mcafee-agent
 - splunkforwarder
 - nessus-agent.elx.install
 # Recommend other custom states be inserted here
{%- endif %}
 - scap.scan

 'G@os_family:Windows':
 [...elided...]

In the above, these salt formulas will be executed unconditionally on RedHat-derivative systems:

	/srv/watchmaker/salt/formulas/name-computer-formula

	/srv/watchmaker/salt/formulas/ash-linux-formula[1]

Similarly, the contents of the following directories will be executed by watchmaker only if the environment specified in the watchmaker-invocation (the string-value after the -e flag) matches one of the elements in the environments list.

	/srv/watchmaker/salt/formulas/join-domain-formula

	/srv/watchmaker/salt/formulas/mcafee-agent-formula

	/srv/watchmaker/salt/formulas/nessus-agent-formula

	/srv/watchmaker/salt/formulas/splunkforwarder-formula

Similarly, the behavior of each of the above states’ executions will be governed by content specified under the /srv/watchmaker/salt/pillar directory hierarchy. This content is used to feed values into the parameter-driven SaltStack states enumerated in the .../formulas directories.

Typical Error Causes

The most frequent causes of errors, once watchmaker has caused Saltstack states to begin their execution, are errors encountered while running the individual enterprise-integration states. Typically, these errors are around stale configuration data (expired domain-join credentials for directory-integration or stale host/IP/port information for other services) or communication-issues between the OS that watchmaker is configuring and the service watchmaker is attempting to configure the instance to integrate: DNS resolution, host or network-level firewall rules, other transit-issues.

The next most frequent errors are already-existing configuration problems in the OS that watchmaker is configuring. These include things like:

	Failures accessing RPM repositories (especially problematic with repositories that require client-cert authentication where there are certificate-expiration problems between the RPM client and repository server)

	Too little storage in critical partitions

	The watchmaker activities running after something else has changed a resource-configuration that watchmaker expects to manage but finds the resource in an unanticipated state

The least frequent cause of errors is related to the SaltStack code itself. Usually, this is caught in pre-release testing, but “bugs happen”. While states are typically coded to try to gracefully handle errors encountered – they’ll typically still fail, but at least try to provide meaningful error-output. Usually, the “bugs happen” errors are resultant of environment-to-environment deltas that were not adequately specified to the code-maintainers or the requisite logic-branching was not able to be adequately exercised across the various environments.

For errors in enterprise-integration content, efforts have been undertaken to try to ensure those errors are adequately represented in this log-file. However, the application-specific logs (the ones for the integrated-application) will still remain the authoritative source for troubleshooting exercises.

[1]
Due to the ash-linux.vendor, ash-linux.stig and ash-linux.iavm specification, only the ash-linux-formula’s vendor, stig and iavm states’ executions will be attempted.

 The /var/log/messages Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/messages Log-File

This is Red Hat Enterprise Linux’s default/primary logging location for miscellaneous system activities. Any init- or systemd-launched service that emits output to STDERR or STDOUT will typically (also) log to this file.[1]

Typically, the provisioning-administrator will wish to review this file to trace where failures in the invocation of watchmaker have failed or where errors in an instance’s/VM’s userData payload has encountered errors.

	Search, case-insensitively, for the string “watchmaker” to find logged-content explicit to the execution of watchmaker. Depending how far watchmaker got before failing, there can be a significant amount of output to pore through (recommend piping to a pagination-tool such as less)

	Search for the string “\ cloud-init:\ ” to find logged-content related to the cloud-init service. This search-string will reveal execution-output made to STDOUT and STDERR by any processes initiated by the cloud-init service. This will typically include watchmaker and any logging-enabled userData script-output. Search output will tend to be even more-significant than looking just for watchmaker (therefore, also recommend piping to a pagination-tool such as less)

The use of the qualifier, “typically”, in the prior bullet is required to account for different methods for invoking watchmaker. Some watchmaker-users leverage methods such as CloudFormation and other templating-engines, Ansible and other externalized provisioning-services, etc. to launch the watchmaker process. Those methods are outside the scope of this document. The relevant logging should be known to the user of these alternate execution-frameworks.

[1]
Some sites will explicitly disable local logging to this file. If this has been done, data that normally shows up in /var/log/messages may, instead, be found in the systemd output logs. See the Using journald document for a fuller detailing of using journald logging.

 The /var/log/cloud-init.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/cloud-init.log Log-File

This is the default location where the Red Hat packaged version of the cloud-init service for Enterprise Linux 6 and 7 writes all of its log-output to – on RHEL 8+, logging data is split-out across this file and the /var/log/cloud-init-output.log file. All automation directly-initiated through cloud-init and that emits STDOUT and/or STDERR messages will be duplicated here.

Primary diagnostic-use with respect to execution of watchmaker will be in tracking errors emitted during preparation to execute watchmaker. If the watchmaker process fails to start (meaning that /var/log/watchmaker/watchmaker.log is never created), this would be a good location to find why watchmaker failed to start.

Useful string-searches for locating executional points-of-interest (“landmarks”) will be (ordered most- to least-useful):

	: FAIL:

	/var/lib/cloud/instance/script

	/var/lib/cloud/instance

	: SUCCESS:

By far, the search for : FAIL: will be the most important in uncovering errors. The other searches will mostly be of use in progress-tracking and verifying expected event-sequencing[1].

Example Failure

Typically, searching for “: FAIL: will bring the file-cursor to a logged-block similar to:

2023-06-21 11:12:36,078 - subp.py[DEBUG]: Unexpected error while running command.
Command: ['/var/lib/cloud/instance/scripts/00_script.sh']
Exit code: 1
Reason: -
Stdout: -
Stderr: -
2023-06-21 11:12:36,078 - cc_scripts_user.py[WARNING]: Failed to run module scripts-user (scripts in /var/lib/cloud/instance/scripts)
2023-06-21 11:12:36,078 - handlers.py[DEBUG]: finish: modules-final/config-scripts-user: FAIL: running config-scripts-user with frequency once-per-instance
2023-06-21 11:12:36,078 - util.py[WARNING]: Running module scripts-user (<module 'cloudinit.config.cc_scripts_user' from '/usr/lib/python3.6/site-packages/cloudinit/config/cc_scripts_user.py'>) failed
2023-06-21 11:12:36,079 - util.py[DEBUG]: Running module scripts-user (<module 'cloudinit.config.cc_scripts_user' from '/usr/lib/python3.6/site-packages/cloudinit/config/cc_scripts_user.py'>) failed
Traceback (most recent call last):
 File "/usr/lib/python3.6/site-packages/cloudinit/stages.py", line 1090, in _run_modules
 run_name, mod.handle, func_args, freq=freq
 File "/usr/lib/python3.6/site-packages/cloudinit/cloud.py", line 55, in run
 return self._runners.run(name, functor, args, freq, clear_on_fail)
 File "/usr/lib/python3.6/site-packages/cloudinit/helpers.py", line 185, in run
 results = functor(*args)
 File "/usr/lib/python3.6/site-packages/cloudinit/config/cc_scripts_user.py", line 44, in handle
 subp.runparts(runparts_path)
 File "/usr/lib/python3.6/site-packages/cloudinit/subp.py", line 426, in runparts
 % (len(failed), ",".join(failed), len(attempted))
RuntimeError: Runparts: 1 failures (00_script.sh) in 1 attempted commands

In this case, the failure happened during the execution of the userdata-script, /var/lib/cloud/instance/scripts/00_script.sh. Even if the script hasn’t logged anything directly useful in this log file or hasn’t even been configured to log its own activities any where, knowing that it was during the execution of this file is useful.

	The provisioning-administrator knows where in the cloud-init automation-sequence things failed

	One can look in other logs for actionable diagnostic-information

	If there’s no such information in other log files, one can hand-execute the failing script to see if the error can be reproduced (and in a way that assists the provisioning-administator with isolating the source of the failure)

For the third point, if the failure is in a BASH script, executing the script with the diagnostic flag set (e.g., bash -x /var/lib/cloud/instance/scripts/00_script.sh) one may be able to see where the script fails.

Similarly, if hand-execution of the script succeeds it can point to the script making incorrect assumptions about the cloud-init managed execution environment. This can include things like:

	Lack of necessary environment variables

	Improperly defined environment-variables

	Attempts to execute commands that require a controlling-TTY (i.e., an interactive-login shell)

	Attempting to do something that the instance’s security posture blocks[2].

Note that comparing execution via cloud-init versus execution from an interactive-shell works whether the script is written in BASH or some other interpreted language.

[1]
Event-sequencing issues most-frequently happen when a userData payload delivers two or more scripts. When multiple scripts are specified in a userData payload, they are not necessarily executed in the same order they’re specified in the userData text-stream. Instead, cloud-init executes scripts placed into the /var/lib/cloud/instance/scripts/ directory in alphabetical order. Thus, if one needs the scripts to execute in a specific order, it is important to carefully name them such that that happens (e.g., 00_script and 01_script would result in the 00_-prefixed script executing prior the 01_-prefixed script)

[2]
SELinux can be especially problematic for processes started by cloud-init. For example, the firewall-cmd utility is not directly usable. cloud-init scripts would need to either issue a setenforce 0 before invoking the command or use the alternate firewall-offline-command

 The /var/log/cloud-init-output.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/cloud-init-output.log Log-File

This is the default location where the Red Hat packaged version of the cloud-init service for Enterprise Linux 8 and higher writes its summary log-output to. Primary content of potential troubleshooting-interest that can get logged here is the output from userData scripts.

 Windows Log-Files

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Windows Log-Files

When using watchmaker on Windows servers, the primary log-files of interest are:

	The c:\watchmaker\logs\watchmaker.log Log-File

	The c:\watchmaker\logs\salt_call.debug Log-File

There can be other files in the c:\watchmaker\logs\ directory, but the ones present will depend on what enterprise-integration features have been selected for watchmaker to attempt to execute and whether those integrations are configured to log independently.

There may be further log-files of interest, depending on how much execution-progress watchmaker has made and how watchmaker has been invoked. These will typically vary by build environment (e.g., when used with a CSP like Azure or AWS, on a physical server or a VM) and what tooling was used to invoke watchmaker.

The additional log-files of interest are typically generated by whatever Windows-specific userData payload-handler is leveraged. The known additonal log-files of interest will be enumerated in further sub-sections. If you are using watchmaker via userData payload and the handler is not enumerated below, please contribute to this project’s documentation.

AWS:

When official Windows instances – ones published through the Amazon/Microsoft partnership – are launched into AWS and execute watchmaker via a userData payload, either of the following log files will be created:

	C:\ProgramData\Amazon\EC2Launch\log\agent.log (see: “EC2Launch” discussion-document)

	C:\ProgramData\Amazon\EC2-Windows\Launch\Log\UserdataExecution.log (see: “EC2Launch v2” discussion- document)

Which log file gets created will depend on the userData-handler used. Older versions of Windows Server (2012, 2016 and 2019) typically use the EC2 Launch handler. Newer versions of Windows Server (2022) use the EC2 v2 Launch-handler[1].

[1]
Since the introduction of the EC2 v2 Launch-handler, official Windows Server AMIs for Server 2012, 2016 and 2019 have been being published. However, they are not the current default (as of the writing of this document). See the link to the EC2 v2 Launch discussion-document for details and caveats.

 The c:\watchmaker\logs\watchmaker.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The c:\watchmaker\logs\watchmaker.log Log-File

This file tracks the top-level execution of the watchmaker configuration-utility. This file should always exist. The primary reasons that it may not exist are:

	The provisioning-administrator has checked for the log before the watchmaker-utility has been downloaded and an execution-attempted. This typically happens if a watchmaker-execution is attempted late in a complex provisioning-process

	An execution-attempt wholly failed. In this case, check the logs for the watchmaker-calling service or process.

	The provisioning-administrator has not invoked watchmaker in accordance with the watchmaker project’s usage-guidance: if a different logging-location was specified (e.g., by adding a flag/argument like --log-dir=C:\TEMP\watchmaker), the provisioning-administrator would need to check the alternately-specified logging-location.

	The provisioning-administrator invoked the watchmaker-managed content directly (e.g., using salt-call -c c:\watchmaker\salt\conf state.highstate). In this scenario, only the content-execution may have been logged (whether logging was captured and where would depend on how the direct-execution was requested).

Location Note

The cited-location of the main watchmaker-execution’s log-file is predicated on the assumption that watchmaker has been executed per the Usage-guidance for Windows:

<powershell>
$BootstrapUrl = "https://watchmaker.cloudarmor.io/releases/latest/watchmaker-bootstrap.ps1"
$PythonUrl = "https://www.python.org/ftp/python/3.10.11/python-3.10.11-amd64.exe"
$PypiUrl = "https://pypi.org/simple"

Use TLS 1.2+
[Net.ServicePointManager]::SecurityProtocol = "Tls12, Tls13"

Download bootstrap file
$BootstrapFile = "${Env:Temp}\$(${BootstrapUrl}.split('/')[-1])"
(New-Object System.Net.WebClient).DownloadFile("$BootstrapUrl", "$BootstrapFile")

Install python
& "$BootstrapFile" -PythonUrl "$PythonUrl" -Verbose -ErrorAction Stop

Install Watchmaker
python -m pip install --index-url="$PypiUrl" --upgrade pip setuptools
python -m pip install --index-url="$PypiUrl" --upgrade watchmaker

Run Watchmaker
watchmaker --log-level debug --log-dir=C:\Watchmaker\Logs
</powershell>

The value of the --log-dir parameter sets the directory-location where watchmaker will create its log-files, including the watchmaker.log file. If a different value is set for the --log-dir parameter, the log-file will be created in that directory-location, instead.

Typical Errors

	Bad specification of remotely-hosted configuration file. This will typically come with an HTTP 404 error similar to:

botocore.exceptions.ClientError: An error occurred (404) when calling the HeadObject operation: Not Found

Ensure that the requested URI for the remotely-hosted configuration file is valid.

	Attempt to use a protected, remotely-hosted configuration-file. This will typically come win an HTTP 403 error. Most typically, this happens when the requested configuration-file exists on a protected network share and the requesting-process doesn’t have permission to access it.

botocore.exceptions.ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden

Ensure that watchmaker has adequate permissions to access the requested, remotely-hosted configuration file.

	Remotely-hosted configuration file is specified as an s3:// URI without installation of boto3 Python module. This will typically come with an error similar to:

2023-06-22 14:26:59,192 [backoff][INFO][4908]: Backing off urlopen_retry(...) for 0.6s (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [backoff][ERROR][4908]: Giving up urlopen_retry(...) after 5 tries (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [watchmaker.config][CRITICAL][4908]: Could not read config file from the provided value "s3://<BUKKIT>/<PREFIX>/config.yaml"! Check that the config is available.

Ensure that the boto3 Python module has been installed prior to attempting to execute watchmaker

Alternate Logs

As noted above, this logfile may not exist if execution of watchmaker has wholly failed. If the execution was attempted via automated-startup methods but there is no watchmaker logfile, it will be necessary to check the CSP provider-logs. On AWS, the logs to check (per the vendor documentation [https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-windows-user-data.html#user-data-execution]) will be:

	If using (legacy) EC2Launch, the log-file to search will be C:\ProgramData\Amazon\EC2-Windows\Launch\Log\UserdataExecution.log

	If using EC2Launch v2, the log-file to search will be C:\ProgramData\Amazon\EC2Launch\log\agent.log

 The c:\watchmaker\logs\salt_call.debug Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The c:\watchmaker\logs\salt_call.debug Log-File

This file captures the execution-activities of SaltStack [https://docs.saltproject.io/en/latest/contents.html] formulae. This file will exist if watchmaker has be able to successfully download and install its (SaltStack-based) configuration-content.

The primary diagnostic interest in this file is if there is an execution-failure within a managed-content module. By default, watchmaker will reboot a system after a successful run[1]. If the expected reboot occurs, this file likely will not be of interest. If the reboot fails to occur and the watchmaker log indicates that it was able to start the SaltStack-based operations, then consult this file to identify what failed and (possibly) why.

Typical Errors

Any errors encountered by SaltStack will typically have a corresponding log-section that starts with a string like:

2023-06-27 12:57:39,841 [salt.state :325][ERROR][5656] { ... }

Errors from the failing SaltStack action will typically include an embedded JSON-stream. The above snippet’s { ... } stands in for an embedded JSON-stream (for brevity’s sake). Depending how long the embedded JSON-stream is, it will probably make things easier for the provisioning-user to convert that stream to a more human-readable JSON document-block.

The most commonly-reported issues are around:

	Domain Join Errors

Domain Join Error

Errors in joining the host to active directory can have several causes. The three most typical are:

	Bad join-user credentials (or locked-out account)

	Inability to find domain controllers

	Inability to communicate with found domain controllers.

The following is version of the salt_call.debug log file with a join-domain failure. The version shown has the JSON-stream expanded into a (more-readable) JSON-document. The original content can be viewed to illustrate why expanding the JSON-stream makes the provisioning-administrator’s life easier.

[...elided...]
2023-06-27 12:57:39,841 [salt.state :325][ERROR][5656]
{
 'pid': 5420,
 'retcode': 1,
 'stdout': '
 VERBOSE: Performing the operation "Join in domain \'plus3it.lab\\aws-c2c4418931.plus3it.lab\'" on target
 "ip-0A005598".\nWARNING: Command [xAdd-Computer] failed. Retrying in 10 second(s).\nVERBOSE: Performing the operation "Join in domain \'plus3it.lab\\aws-c2c4418931.plus3it.lab\'" on target
 "ip-0A005598".\nWARNING: Command [xAdd-Computer] failed. Retrying in 20 second(s).\nVERBOSE: Performing the operation "Join in domain \'plus3it.lab\\aws-c2c4418931.plus3it.lab\'" on target
 "ip-0A005598".\nWARNING:

 PSMessageDetails :
 Exception : System.Management.Automation.RuntimeException: Command [xAdd-Computer] failed
 TargetObject : Command [xAdd-Computer] failed
 CategoryInfo : OperationStopped: (Command [xAdd-Computer] failed:String) [], RuntimeException
 FullyQualifiedErrorId : Command [xAdd-Computer] failed
 ErrorDetails :
 InvocationInfo : System.Management.Automation.InvocationInfo
 ScriptStackTrace : at Retry-TestCommand, C:\\ProgramData\\Salt
 Project\\Salt\\var\\cache\\salt\\minion\\extfiles\\join-domain\\JoinDomain.ps1: line 519
 at <ScriptBlock>, C:\\ProgramData\\Salt
 Project\\Salt\\var\\cache\\salt\\minion\\extfiles\\join-domain\\JoinDomain.ps1: line 678
 at <ScriptBlock>, <No file>: line 1
 PipelineIterationInfo : {}

 WARNING: Command [xAdd-Computer] failed the maximum number of 3 time(s).\n11/14/2018 16:05:56:270 ---
 11/14/2018 16:05:56:270 NetpDoDomainJoin
 11/14/2018 16:05:56:270 NetpDoDomainJoin: using new computer names
 11/14/2018 16:05:56:270 NetpDoDomainJoin: NetpGetNewMachineName returned 0x0
 11/14/2018 16:05:56:270 NetpMachineValidToJoin: \'WIN-VDQFC8O4JEM\'
 11/14/2018 16:05:56:270 NetpMachineValidToJoin: status: 0x0
 11/14/2018 16:05:56:270 NetpJoinWorkgroup: joining computer \'WIN-VDQFC8O4JEM\' to workgroup \'WORKGROUP\'
 11/14/2018 16:05:56:270 NetpValidateName: checking to see if \'WORKGROUP\' is valid as type 2 name
 11/14/2018 16:05:56:286 NetpCheckNetBiosNameNotInUse for \'WORKGROUP\' [Workgroup as MACHINE] returned 0x0
 11/14/2018 16:05:56:286 NetpValidateName: name \'WORKGROUP\' is valid for type 2
 11/14/2018 16:05:56:614 NetpJoinWorkgroup: status: 0x0
 11/14/2018 16:05:56:614 NetpDoDomainJoin: status: 0x0
 06/23/2023 13:59:59:151 ---
 06/23/2023 13:59:59:151 NetpDoDomainJoin
 06/23/2023 13:59:59:151 NetpDoDomainJoin: using new computer names
 06/23/2023 13:59:59:151 NetpDoDomainJoin: NetpGetNewMachineName returned 0x0
 06/23/2023 13:59:59:151 NetpDoDomainJoin: NetpGetNewHostName returned 0x0
 06/23/2023 13:59:59:151 NetpMachineValidToJoin: \'IP-0A005598\'
 06/23/2023 13:59:59:151 OS Version: 10.0
 06/23/2023 13:59:59:151 Build number: 17763 (17763.rs5_release.180914-1434)
 06/23/2023 13:59:59:151 SKU: Windows Server 2019 Datacenter
 06/23/2023 13:59:59:151 Architecture: 64-bit (AMD64)
 06/23/2023 13:59:59:245 NetpMachineValidToJoin: status: 0x0
 06/23/2023 13:59:59:245 NetpJoinDomain
 06/23/2023 13:59:59:245 HostName: ip-0A005598
 06/23/2023 13:59:59:245 NetbiosName: IP-0A005598
 06/23/2023 13:59:59:245 Domain: plus3it.lab\\aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:245 MachineAccountOU: (NULL)
 06/23/2023 13:59:59:245 Account: dom-joiner
 06/23/2023 13:59:59:245 Options: 0x403
 06/23/2023 13:59:59:245 NetpDisableIDNEncoding: no domain dns available - IDN encoding will NOT be disabled
 06/23/2023 13:59:59:245 NetpJoinDomainOnDs: NetpDisableIDNEncoding returned: 0x0
 06/23/2023 13:59:59:292 NetpJoinDomainOnDs: status of connecting to dc \'\\\\aws-101f37cc48.plus3it.lab\': 0x0
 06/23/2023 13:59:59:307 NetpJoinDomainOnDs: Passed DC \'aws-101f37cc48.plus3it.lab\' verified as DNS name \'\\\\aws-101f37cc48.plus3it.lab\'
 06/23/2023 13:59:59:307 NetpDsGetDcName: status of verifying DNS A record name resolution for \'aws-101f37cc48.plus3it.lab\': 0x0
 06/23/2023 13:59:59:307 NetpGetDnsHostName: PrimaryDnsSuffix defaulted to DNS domain name: plus3it.lab
 06/23/2023 13:59:59:323 NetpProvisionComputerAccount:
 06/23/2023 13:59:59:323 lpDomain: plus3it.lab
 06/23/2023 13:59:59:323 lpHostName: ip-0A005598
 06/23/2023 13:59:59:323 lpMachineAccountOU: (NULL)
 06/23/2023 13:59:59:323 lpDcName: aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:323 lpMachinePassword: (null)
 06/23/2023 13:59:59:323 lpAccount: dom-joiner
 06/23/2023 13:59:59:323 lpPassword: (non-null)
 06/23/2023 13:59:59:323 dwJoinOptions: 0x403
 06/23/2023 13:59:59:323 dwOptions: 0x40000003
 06/23/2023 13:59:59:370 NetpLdapBind: Verified minimum encryption strength on aws-101f37cc48.plus3it.lab: 0x0
 06/23/2023 13:59:59:370 NetpLdapGetLsaPrimaryDomain: reading domain data
 06/23/2023 13:59:59:370 NetpGetNCData: Reading NC data
 06/23/2023 13:59:59:370 NetpGetDomainData: Lookup domain data for: DC=plus3it,DC=lab
 06/23/2023 13:59:59:370 NetpGetDomainData: Lookup crossref data for: CN=Partitions,CN=Configuration,DC=plus3it,DC=lab
 06/23/2023 13:59:59:370 NetpLdapGetLsaPrimaryDomain: result of retrieving domain data: 0x0
 06/23/2023 13:59:59:370 NetpGetLocalDACDisabled: returning 0x0, *pfDACDisabled=TRUE
 06/23/2023 13:59:59:370 NetpCheckForDomainSIDCollision: returning 0x0(0).
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Cracking DNS domain name plus3it.lab/ into Netbios on \\\\aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Crack results: name = PLUS3IT\\
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Cracking account name PLUS3IT\\IP-0A005598$ on \\\\aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Crack results: Account does not exist
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Cracking Netbios domain name PLUS3IT\\ into root DN on \\\\aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Crack results: name = DC=plus3it,DC=lab
 06/23/2023 13:59:59:385 NetpGetComputerObjectDn: Got DN CN=IP-0A005598,CN=Computers,DC=plus3it,DC=lab from the default computer container
 06/23/2023 13:59:59:385 NetpGetADObjectOwnerAttributes: Looking up attributes for machine account: CN=IP-0A005598,CN=Computers,DC=plus3it,DC=lab
 06/23/2023 13:59:59:385 NetpGetADObjectOwnerAttributes: Ldap Search failed: 8240
 06/23/2023 13:59:59:385 NetpCheckIfAccountShouldBeReused: Computer Object does not exist in OU.
 06/23/2023 13:59:59:385 NetpCheckIfAccountShouldBeReused:fReuseAllowed: TRUE, NetStatus:0x2030
 06/23/2023 13:59:59:385 NetpModifyComputerObjectInDs: Initial attribute values:
 06/23/2023 13:59:59:385 objectClass = Computer
 06/23/2023 13:59:59:385 SamAccountName = IP-0A005598$
 06/23/2023 13:59:59:385 userAccountControl = 0x1000
 06/23/2023 13:59:59:385 DnsHostName = ip-0A005598.plus3it.lab
 06/23/2023 13:59:59:385 ServicePrincipalName = HOST/ip-0A005598.plus3it.lab RestrictedKrbHost/ip-0A005598.plus3it.lab HOST/IP-0A005598 RestrictedKrbHost/IP-0A005598
 06/23/2023 13:59:59:385 unicodePwd = <SomePassword>
 06/23/2023 13:59:59:385 NetpModifyComputerObjectInDs: Computer Object does not exist in OU
 06/23/2023 13:59:59:385 NetpModifyComputerObjectInDs: Attribute values to set:
 06/23/2023 13:59:59:385 objectClass = Computer
 06/23/2023 13:59:59:385 SamAccountName = IP-0A005598$
 06/23/2023 13:59:59:385 userAccountControl = 0x1000
 06/23/2023 13:59:59:385 DnsHostName = ip-0A005598.plus3it.lab
 06/23/2023 13:59:59:385 ServicePrincipalName = HOST/ip-0A005598.plus3it.lab RestrictedKrbHost/ip-0A005598.plus3it.lab HOST/IP-0A005598 RestrictedKrbHost/IP-0A005598
 06/23/2023 13:59:59:385 unicodePwd = <SomePassword>
 06/23/2023 13:59:59:448 Querying "CN=IP-0A005598,CN=Computers,DC=plus3it,DC=lab" for objectSid attribute
 06/23/2023 13:59:59:448 NetpQueryObjectSidAttribute succeeded: got RID=0x16c30 objectSid=S-1-5-21-3217479199-34324276-1494086650-93232
 06/23/2023 13:59:59:448 NetpDeleteMachineAccountKey: called for computer \'IP-0A005598\'
 06/23/2023 13:59:59:464 NetpGetComputerObjectDn: Cracking DNS domain name plus3it.lab/ into Netbios on \\\\aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:464 NetpGetComputerObjectDn: Crack results: name = PLUS3IT\\
 06/23/2023 13:59:59:464 NetpGetComputerObjectDn: Cracking account name PLUS3IT\\IP-0A005598$ on \\\\aws-101f37cc48.plus3it.lab
 06/23/2023 13:59:59:464 NetpGetComputerObjectDn: Crack results: (Account already exists) DN = CN=IP-0A005598,CN=Computers,DC=plus3it,DC=lab
 06/23/2023 13:59:59:464 NetpDeleteMachineAccountKey: msDS-KeyCredentialLink attr was not found on computer \'IP-0A005598\' - no action required.
 06/23/2023 13:59:59:464 NetpDeleteMachineAccountKey: returning Status: 0
 06/23/2023 13:59:59:464 ldap_unbind status: 0x0
 06/23/2023 13:59:59:464 NetpJoinCreatePackagePart: status:0x0.
 06/23/2023 13:59:59:495 NetpJoinDomainOnDs: Setting netlogon cache.
 06/23/2023 13:59:59:495 NetpJoinDomainOnDs: status of setting netlogon cache: 0x0
 06/23/2023 13:59:59:495 NetpJoinDomainOnDs: Function exits with status of: 0x0
 06/23/2023 13:59:59:495 NetpJoinDomainOnDs: status of disconnecting from \'\\\\aws-101f37cc48.plus3it.lab\': 0x0
 06/23/2023 13:59:59:495 NetpJoinDomain: DsrIsDeviceJoined returned false
 06/23/2023 13:59:59:620 NetpJoinDomain: NetpCompleteOfflineDomainJoin SUCCESS: Requested a reboot :0x0
 06/23/2023 13:59:59:620 NetpDoDomainJoin: status: 0x0
 Setting backup/restore privileges.
 06/23/2023 13:59:59:464 NetpProvGetWindowsImageState: IMAGE_STATE_COMPLETE.
 06/23/2023 13:59:59:464 NetpAddPartCollectionToRegistry.
 06/23/2023 13:59:59:464 NetpProvGetTargetProductVersion: Target product version: 10.0.17763.4252
 06/23/2023 13:59:59:479 NetpAddPartCollectionToRegistry: delete OP state key status: 0x2.
 06/23/2023 13:59:59:479 NetpConvertBlobToJoinState: Translating provisioning data to internal format
 06/23/2023 13:59:59:479 NetpConvertBlobToJoinState: Selecting version 1
 06/23/2023 13:59:59:479 NetpConvertBlobToJoinState: exiting: 0x0
 06/23/2023 13:59:59:495 NetpJoin2RequestPackagePartInstall: Successfully persisted all fields
 06/23/2023 13:59:59:495 NetpJoin3RequestPackagePartInstall: Successfully persisted all fields
 06/23/2023 13:59:59:495 NetpAddPartCollectionToRegistry: Successfully initiated provisioning package installation: 3/3 part(s) installed.
 06/23/2023 13:59:59:495 NetpAddPartCollectionToRegistry: status: 0x0.
 06/23/2023 13:59:59:495 NetpOpenRegistry: status: 0x0.
 06/23/2023 13:59:59:495 NetpSetPrivileges: status: 0x0.
 06/23/2023 13:59:59:495 NetpRequestProvisioningPackageInstall: status: 0x0.
 06/23/2023 13:59:59:495 ---
 06/23/2023 13:59:59:495 NetpProvContinueProvisioningPackageInstall:
 06/23/2023 13:59:59:495 Context: 0
 06/23/2023 13:59:59:495 NetpProvGetWindowsImageState: IMAGE_STATE_COMPLETE.
 06/23/2023 13:59:59:510 NetpCreatePartListFromRegistry: status: 0x0.
 06/23/2023 13:59:59:510 NetpCompleteOfflineDomainJoin
 06/23/2023 13:59:59:510 fBootTimeCaller: FALSE
 06/23/2023 13:59:59:510 fSetLocalGroups: TRUE
 06/23/2023 13:59:59:510 NetpJoinDomainLocal: NetpHandleJoinedStateInfo returned: 0x0
 06/23/2023 13:59:59:588 NetpJoinDomainLocal: NetpManageMachineSecret returned: 0x0.
 06/23/2023 13:59:59:588 Calling NetpQueryService to get Netlogon service state.
 06/23/2023 13:59:59:588 NetpJoinDomainLocal: NetpQueryService returned: 0x0.
 06/23/2023 13:59:59:588 NetpJoinDomainLocal: status of setting LSA pri. domain: 0x0
 06/23/2023 13:59:59:588 NetpManageLocalGroupsForJoin: Adding groups for new domain, removing groups from old domain, if any.
 06/23/2023 13:59:59:604 NetpManageLocalGroupsForJoin: status of modifying groups related to domain \'PLUS3IT\' to local groups: 0x0
 06/23/2023 13:59:59:604 NetpManageLocalGroupsForJoin: INFO: No old domain groups to process.
 06/23/2023 13:59:59:604 NetpJoinDomainLocal: Status of managing local groups: 0x0
 06/23/2023 13:59:59:604 NetpJoinDomainLocal: status of setting ComputerNamePhysicalDnsDomain to \'plus3it.lab\': 0x0
 06/23/2023 13:59:59:604 NetpJoinDomainLocal: Controlling services and setting service start type.
 06/23/2023 13:59:59:604 NetpJoinDomainLocal: Updating W32TimeConfig
 06/23/2023 13:59:59:620 NetpCompleteOfflineDomainJoin: status: 0x0
 06/23/2023 13:59:59:620 NetpJoinProvider2OLContinuePackagePartInstall: ignoring Context=0 (work finished already).
 06/23/2023 13:59:59:620 NetpJoinProvider3OLContinuePackagePartInstall: ignoring Context=0 (work finished already).
 06/23/2023 13:59:59:620 NetpProvContinueProvisioningPackageInstall: Provisioning package installation completed successfully.
 06/23/2023 13:59:59:620 NetpProvContinueProvisioningPackageInstall: delete OP state key status: 0x0.
 06/23/2023 13:59:59:620 NetpProvContinueProvisioningPackageInstall: status: 0xa99.
 06/27/2023 12:51:08:911 ---
 06/27/2023 12:51:08:911 NetpUnJoinDomain: unjoin from \'PLUS3IT\' using \'plus3it.lab\\dom-joiner\' creds, options: 0x4
 06/27/2023 12:51:08:911 OS Version: 10.0
 06/27/2023 12:51:08:911 Build number: 17763 (17763.rs5_release.180914-1434)
 06/27/2023 12:51:08:911 SKU: Windows Server 2019 Datacenter
 06/27/2023 12:51:08:911 Architecture: 64-bit (AMD64)
 06/27/2023 12:51:08:911 NetpUnJoinDomain: status of getting computer name: 0x0
 06/27/2023 12:51:08:911 NetpUnJoinDomain: DsrIsDeviceJoined returned false
 06/27/2023 12:51:08:911 NetpApplyJoinState: actions: 0x22b805a
 06/27/2023 12:51:08:927 NetpDsGetDcName: trying to find DC in domain \'PLUS3IT\', flags: 0x1010
 06/27/2023 12:51:08:927 NetpDsGetDcName: found DC \'\\\\AWS-C2C4418931\' in the specified domain
 06/27/2023 12:51:09:123 NetpApplyJoinState: status of connecting to dc \'\\\\AWS-C2C4418931\': 0x0
 06/27/2023 12:51:10:141 NetpApplyJoinState: status of stopping and setting start type of Netlogon to 16: 0x0
 06/27/2023 12:51:10:141 NetpApplyJoinState: NON FATAL: status of removing DNS registrations: 0x0
 06/27/2023 12:51:10:141 NetpGetLsaMachineAccountInfoOld: status: 0x0
 06/27/2023 12:51:10:141 NetpApplyJoinState: status of getting LSA machine acct info (old) 0x0
 06/27/2023 12:51:10:188 NetpManageMachineAccountWithSid: status of disabling account \'IP-0A005598$\' on \'\\\\AWS-C2C4418931\': 0x0
 06/27/2023 12:51:10:188 NetpApplyJoinState: status of disabling account: 0x0
 06/27/2023 12:51:10:188 NetpApplyJoinState: status of setting LSA pri. domain: 0x0
 06/27/2023 12:51:10:188 NetpSetLsaMachineAccountInfoOld: status: 0x0
 06/27/2023 12:51:10:188 NetpApplyJoinState: status of setting LSA machine acct info (old) 0x0
 06/27/2023 12:51:10:188 NetpApplyJoinState: status of clearing ComputerNamePhysicalDnsDomain: 0x0
 06/27/2023 12:51:10:221 NetpApplyJoinState: status of removing from local groups: 0x0
 06/27/2023 12:51:10:259 NetpApplyJoinState: status of disconnecting from \'\\\\AWS-C2C4418931\': 0x0
 06/27/2023 12:51:10:259 NetpUnJoinDomain: status: 0x0
 06/27/2023 12:51:10:274 ---
 06/27/2023 12:51:10:274 NetpDoDomainJoin
 06/27/2023 12:51:10:274 NetpDoDomainJoin: using current computer names
 06/27/2023 12:51:10:274 NetpDoDomainJoin: NetpGetComputerNameEx(NetBios) returned 0x0
 06/27/2023 12:51:10:274 NetpMachineValidToJoin: \'IP-0A005598\'
 06/27/2023 12:51:10:274 OS Version: 10.0
 06/27/2023 12:51:10:274 Build number: 17763 (17763.rs5_release.180914-1434)
 06/27/2023 12:51:10:274 SKU: Windows Server 2019 Datacenter
 06/27/2023 12:51:10:274 Architecture: 64-bit (AMD64)
 06/27/2023 12:51:10:274 NetpMachineValidToJoin: status: 0x0
 06/27/2023 12:51:10:274 NetpJoinWorkgroup: joining computer \'IP-0A005598\' to workgroup \'WORKGROUP\'
 06/27/2023 12:51:10:274 NetpValidateName: checking to see if \'WORKGROUP\' is valid as type 2 name
 06/27/2023 12:51:16:366 NetpCheckNetBiosNameNotInUse for \'WORKGROUP\' [Workgroup as MACHINE] returned 0x0
 06/27/2023 12:51:16:366 NetpValidateName: name \'WORKGROUP\' is valid for type 2
 06/27/2023 12:51:16:366 NetpJoinWorkgroup: status: 0x0
 06/27/2023 12:51:16:366 NetpDoDomainJoin: status: 0x0
 06/27/2023 12:57:09:335 ---
 06/27/2023 12:57:09:335 NetpDoDomainJoin
 06/27/2023 12:57:09:335 NetpDoDomainJoin: using new computer names
 06/27/2023 12:57:09:335 NetpDoDomainJoin: NetpGetNewMachineName returned 0x0
 06/27/2023 12:57:09:335 NetpDoDomainJoin: NetpGetNewHostName returned 0x0
 06/27/2023 12:57:09:335 NetpMachineValidToJoin: \'IP-0A005598\'
 06/27/2023 12:57:09:335 OS Version: 10.0
 06/27/2023 12:57:09:335 Build number: 17763 (17763.rs5_release.180914-1434)
 06/27/2023 12:57:09:335 SKU: Windows Server 2019 Datacenter
 06/27/2023 12:57:09:335 Architecture: 64-bit (AMD64)
 06/27/2023 12:57:09:335 NetpMachineValidToJoin: status: 0x0
 06/27/2023 12:57:09:335 NetpJoinDomain
 06/27/2023 12:57:09:335 HostName: ip-0A005598
 06/27/2023 12:57:09:335 NetbiosName: IP-0A005598
 06/27/2023 12:57:09:335 Domain: plus3it.lab\\aws-c2c4418931.plus3it.lab
 06/27/2023 12:57:09:335 MachineAccountOU: (NULL)
 06/27/2023 12:57:09:335 Account: dom-joiner
 06/27/2023 12:57:09:335 Options: 0x403
 06/27/2023 12:57:09:335 NetpDisableIDNEncoding: no domain dns available - IDN encoding will NOT be disabled
 06/27/2023 12:57:09:335 NetpJoinDomainOnDs: NetpDisableIDNEncoding returned: 0x0
 06/27/2023 12:57:09:398 NetUseAdd to \\\\aws-c2c4418931.plus3it.lab\\IPC$ returned 1326
 06/27/2023 12:57:09:398 NetpJoinDomainOnDs: status of connecting to dc \'\\\\aws-c2c4418931.plus3it.lab\': 0x52e
 06/27/2023 12:57:09:398 NetpJoinDomainOnDs: Function exits with status of: 0x52e
 06/27/2023 12:57:09:398 NetpJoinDomainOnDs: NetpResetIDNEncoding on \'(null)\': 0x0
 06/27/2023 12:57:09:398 NetpDoDomainJoin: status: 0x52e
 06/27/2023 12:57:19:429 ---
 06/27/2023 12:57:19:429 NetpDoDomainJoin
 06/27/2023 12:57:19:429 NetpDoDomainJoin: using new computer names
 06/27/2023 12:57:19:429 NetpDoDomainJoin: NetpGetNewMachineName returned 0x0
 06/27/2023 12:57:19:429 NetpDoDomainJoin: NetpGetNewHostName returned 0x0
 06/27/2023 12:57:19:429 NetpMachineValidToJoin: \'IP-0A005598\'
 06/27/2023 12:57:19:429 OS Version: 10.0
 06/27/2023 12:57:19:429 Build number: 17763 (17763.rs5_release.180914-1434)
 06/27/2023 12:57:19:429 SKU: Windows Server 2019 Datacenter
 06/27/2023 12:57:19:429 Architecture: 64-bit (AMD64)
 06/27/2023 12:57:19:429 NetpMachineValidToJoin: status: 0x0
 06/27/2023 12:57:19:429 NetpJoinDomain
 06/27/2023 12:57:19:429 HostName: ip-0A005598
 06/27/2023 12:57:19:429 NetbiosName: IP-0A005598
 06/27/2023 12:57:19:429 Domain: plus3it.lab\\aws-c2c4418931.plus3it.lab
 06/27/2023 12:57:19:429 MachineAccountOU: (NULL)
 06/27/2023 12:57:19:429 Account: dom-joiner
 06/27/2023 12:57:19:429 Options: 0x403
 06/27/2023 12:57:19:429 NetpDisableIDNEncoding: no domain dns available - IDN encoding will NOT be disabled
 06/27/2023 12:57:19:429 NetpJoinDomainOnDs: NetpDisableIDNEncoding returned: 0x0
 06/27/2023 12:57:19:476 NetUseAdd to \\\\aws-c2c4418931.plus3it.lab\\IPC$ returned 1326
 06/27/2023 12:57:19:476 NetpJoinDomainOnDs: status of connecting to dc \'\\\\aws-c2c4418931.plus3it.lab\': 0x52e
 06/27/2023 12:57:19:476 NetpJoinDomainOnDs: Function exits with status of: 0x52e
 06/27/2023 12:57:19:476 NetpJoinDomainOnDs: NetpResetIDNEncoding on \'(null)\': 0x0
 06/27/2023 12:57:19:476 NetpDoDomainJoin: status: 0x52e
 06/27/2023 12:57:39:510 ---
 06/27/2023 12:57:39:510 NetpDoDomainJoin
 06/27/2023 12:57:39:510 NetpDoDomainJoin: using new computer names
 06/27/2023 12:57:39:510 NetpDoDomainJoin: NetpGetNewMachineName returned 0x0
 06/27/2023 12:57:39:510 NetpDoDomainJoin: NetpGetNewHostName returned 0x0
 06/27/2023 12:57:39:510 NetpMachineValidToJoin: \'IP-0A005598\'
 06/27/2023 12:57:39:510 OS Version: 10.0
 06/27/2023 12:57:39:510 Build number: 17763 (17763.rs5_release.180914-1434)
 06/27/2023 12:57:39:510 SKU: Windows Server 2019 Datacenter
 06/27/2023 12:57:39:510 Architecture: 64-bit (AMD64)
 06/27/2023 12:57:39:510 NetpMachineValidToJoin: status: 0x0
 06/27/2023 12:57:39:510 NetpJoinDomain
 06/27/2023 12:57:39:510 HostName: ip-0A005598
 06/27/2023 12:57:39:510 NetbiosName: IP-0A005598
 06/27/2023 12:57:39:510 Domain: plus3it.lab\\aws-c2c4418931.plus3it.lab
 06/27/2023 12:57:39:510 MachineAccountOU: (NULL)
 06/27/2023 12:57:39:510 Account: dom-joiner
 06/27/2023 12:57:39:510 Options: 0x403
 06/27/2023 12:57:39:510 NetpDisableIDNEncoding: no domain dns available - IDN encoding will NOT be disabled
 06/27/2023 12:57:39:510 NetpJoinDomainOnDs: NetpDisableIDNEncoding returned: 0x0
 06/27/2023 12:57:39:574 NetUseAdd to \\\\aws-c2c4418931.plus3it.lab\\IPC$ returned 1326
 06/27/2023 12:57:39:574 NetpJoinDomainOnDs: status of connecting to dc \'\\\\aws-c2c4418931.plus3it.lab\': 0x52e
 06/27/2023 12:57:39:574 NetpJoinDomainOnDs: Function exits with status of: 0x52e
 06/27/2023 12:57:39:574 NetpJoinDomainOnDs: NetpResetIDNEncoding on \'(null)\': 0x0
 06/27/2023 12:57:39:574 NetpDoDomainJoin: status: 0x52e
 ',
 'stderr': '
 Retry-TestCommand : Command [xAdd-Computer] failed
 At C:\\ProgramData\\Salt Project\\Salt\\var\\cache\\salt\\minion\\extfiles\\join-domain\\JoinDomain.ps1:678 char:7
 + Retry-TestCommand -Test xAdd-Computer -Args @{DomainName=$Domai ...
 + ~~~
 + CategoryInfo : OperationStopped: (Command [xAdd-Computer] failed:String) [Retry-TestCommand], RuntimeEx
 ception
 + FullyQualifiedErrorId : Command [xAdd-Computer] failed,Retry-TestCommand
 '
}
2023-06-27 12:57:39,859 [salt.state :2458][INFO][5656] Completed state [& "C:\ProgramData\Salt Project\Salt\var\cache\salt\minion\extfiles\join-domain\JoinDomain.ps1" -DomainName "plus3it.lab" -TargetOU "" -UserName "dom-joiner" -Tries 3 -ErrorAction Stop] at time 12:57:39.859161 (duration_in_ms=32050.5)
[...elided...]

[1]
This behavior may be overridden by having invoked watchmaker with the -n flag

 The C:\ProgramData\Amazon\EC2-Windows\Launch\Log\UserdataExecution.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The C:\ProgramData\Amazon\EC2-Windows\Launch\Log\UserdataExecution.log Log-File

This file tracks the top-level execution of any tasks specified in a Windows Server EC2’s userData payload. This file should always exist. The primary reasons that it may not exist are:

	The EC2 was launched from an AMI that leverages the EC2Launch v2 method

	The EC2 was launched from an AMI that does not have the tooling to support parsin