

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

watchmaker

Applied Configuration Management

Overview

Watchmaker is intended to help provision a system from its initial installation
to its final configuration. It was inspired by a desire to eliminate static
system images with embedded configuration settings (e.g. gold disks) and the
pain associated with maintaining them.

Watchmaker works as a sort of task runner. It consists of “managers” and
“workers”. A manager implements common methods for multiple platforms
(Linux, Windows, etc). A worker exposes functionality to a user that helps
bootstrap and configure the system. Managers are primarily internal
constructs; workers expose configuration artifacts to users. Watchmaker then
uses a common configuration file to determine what
workers to execute on each platform.

Contents

	Installation

	Configuration

	Usage

	Execution Customization

	Troubleshooting Guidance

	Hardening “Gotchas”

	Frequently Asked Questions

	Supported SCAP Benchmarks

	Common Scan Findings

	API Reference

	Contributing

	Changelog

Supported Operating Systems

	Enterprise Linux 8 (RHEL/CentOS Stream/Oracle Linux)

	Enterprise Linux 7 (RHEL/CentOS)

	Windows Server 2019

	Windows Server 2016

	Windows Server 2012 R2

	Windows 10

	Windows 8.1

Supported Python Versions

	Python 3.6 and later

	Python 2.7 and later

Supported Salt Versions

	Salt 2018.3, from 2018.3.4 and later

	Salt 2019.2, from 2019.2.5 and later

	Salt 300x, from 3003 and later

 Installation

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Installation

From Python Package Index

The preferred method to install watchmaker is from the Python Package Index
(PyPi), using pip [https://pip.pypa.io/en/stable/]. Without any other options, this will always install
the most recent stable release.

python3 -m pip install watchmaker

If you do not have Python or pip [https://pip.pypa.io/en/stable/], this Python installation guide [https://python-guide.readthedocs.io/en/latest/starting/installation/]
can guide you through the process.

Note

Versions 10 and later of pip do not support Python 2.6. On CentOS 6 and
RHEL 6, Python 2.6 is the system version of Python. If you are using Python
2.6 with watchmaker, you will need to restrict the pip install such
that a version earlier than 10 is installed. See the relevant question in
the [FAQ](faq.html) for more details.

From source

Watchmaker can also be built and installed from source, using git and pip.
The source for watchmaker are available from the GitHub repo [https://github.com/plus3it/watchmaker].

	First clone the public repository to pull the code to your local machine:

git clone https://github.com/plus3it/watchmaker.git --recursive && cd watchmaker

This project uses submodules, so it’s easiest to use the --recursive
flag, as above. If you don’t, you will need to pull in the submodules as
well:

git submodule update --init --recursive

	If you want to install a specific branch or tag, check it out before
installing Watchmaker:

git checkout <branch-tag-foo>

	Then you can install Watchmaker:

python3 -m pip install .

From standalone executable

Watchmaker can also be downloaded and executed in an all-in-one package containing
Watchmaker’s dependencies, such as Python and necessary Python packages. Packages
are available for Windows and Linux.

	Retrieve the Watchmaker standalone package for your desired platform from
GitHub Releases or the Cloudarmor repo [https://watchmaker.cloudarmor.io/list.html].

	GitHub Releases [https://github.com/plus3it/watchmaker/releases/] shows the available Watchmaker versions and includes
links to the Windows and Linux packages, and their SHA256 hashes.

	The latest release [https://github.com/plus3it/watchmaker/releases/latest/] can also be directly accessed on GitHub:

	https://github.com/plus3it/watchmaker/releases/latest/

	The Cloudarmor repo [https://watchmaker.cloudarmor.io/list.html] also contains versioned Watchmaker packages
and corresponding SHA256 hashes. You can browse the repo [https://watchmaker.cloudarmor.io/list.html], or construct
the URL to the files using these patterns:

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-standalone-linux-x86_64

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-sha256-linux-x86_64.json

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-standalone-windows-amd64.exe

	https://watchmaker.cloudarmor.io/releases/${VERSION}/watchmaker-${VERSION}-sha256-windows-amd64.json

	The latest release [https://watchmaker.cloudarmor.io/list.html#releases/latest/] is always available on the Cloudarmor repo at these
URLs:

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-linux-x86_64

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-sha256-linux-x86_64.json

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-windows-amd64.exe

	https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-sha256-windows-amd64.json

	From PowerShell, the Windows package can be downloaded as follows:

PS C:\wam> $url = "https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-windows-amd64.exe"
PS C:\wam> (New-Object System.Net.WebClient).DownloadFile($url, "watchmaker.exe")

	From the command line, the Linux package can be downloaded as follows:

curl -so watchmaker https://watchmaker.cloudarmor.io/releases/latest/watchmaker-latest-standalone-linux-x86_64

	For the latest package, the version of Watchmaker can be determined by
viewing the contents of the SHA256 hash file or by executing the package
with the --version flag.

	Verify the integrity of the standalone package.

Compare the SHA256 hash contained in the downloaded hash file to a hash you
compute for the package.

For Linux, execute this command to compute the SHA256 hash:

shasum -a 256 watchmaker-latest-standalone-linux-x86_64

For Windows, execute this command to compute the SHA256 hash:

PS C:\wam> Get-FileHash watchmaker-latest-standalone-windows-amd64.exe | Format-List

	Set executable access permission.

For Linux, you will need to set the access permissions to allow the standalone
executable to run. Below is an example:

chmod +x watchmaker-latest-standalone-linux-x86_64

Prerequisites for features specific to AWS and Azure

Watchmaker has some features specific to AWS and Azure:

* AWS:
 * Download files in config references from Amazon S3
 * Tag Amazon EC2 instances with Watchmaker status
* Azure:
 * Tag Azure Virtual Machines with Watchmaker status

If you are using the source install from PyPi, and if your config uses any of those
features, be sure to also install the SDKs those features are built on. If you are
using the standalone package, these dependencies are part of the package and no
further action or install is needed.

For AWS features, install the boto3 library:

python3 pip -m install boto3

For Azure features, install the azure libraries:

python3 pip -m install azure-core azure-identity azure-mgmt-resource

 Configuration

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Configuration

Watchmaker is configured using a YAML [https://yaml.org/spec/1.2/spec.html] file. Watchmaker’s default
config.yaml [https://github.com/plus3it/watchmaker/blob/main/src/watchmaker/static/config.yaml] file should work out-of-the-box for most systems and
environments. You can also use it as an example to create your own
configuration file. The default config file will install Salt and use the
bundled Salt formulas to harden the system according to the DISA STIG.

The configuration is a dictionary. The parent nodes (keys) are: all, linux,
or windows. The parent nodes contain a list of workers to execute, and each
worker contains parameters specific to that worker. The all node is applied
to every system, and linux and windows are applied only to their respective
systems.

You can create a file using the above format with your own set of standard
values and use that file for Watchmaker. Pass the CLI parameter --config to
point to that file.

Configuration Precedence

In addition to passing values in the configuration file, watchmaker supports
passing arguments on the cli. The order of precedence for arguments is,
from least to most:

	configuration file

	cli argument

In other words, providing a value as a cli argument will override the same value
provided in the configuration file.

config.yaml Parent Nodes

watchmaker_version

If used, this optional node constrains the version of Watchmaker that can be used with the configuration. The watchmaker_version node is recommended for all configurations used with versions of Watchmaker 0.17+.

This is an example of using the watchmaker_version node:

watchmaker_version: "== 0.17.0"

Any PEP440-compatible version specifier [https://www.python.org/dev/peps/pep-0440/#version-specifiers] can be used in the watchmaker_version node. Each version clause should include a comparison operator, such as ~=, ==, !=, <=, >=, <, >, or ===. Multiple clauses can be included, separated by commas. Below are examples of version specifiers.

watchmaker_version: "~= 0.17.0"
watchmaker_version: "> 0.16.5"
watchmaker_version: ">= 0.17.0, <= 0.18.9, != 0.17.2"

Attempting to use a configuration with an incompatible version of Watchmaker will result in an error.

all

Section for Worker configurations that affect the deployment of all platforms.
The all section will override parameters that are set in the OS-specific
sections of config.yaml.

linux

Section for Worker configurations that should only be applied to Linux-based
systems.

windows

Section for Worker configurations that should only be applied to Windows-based
systems.

status

Watchmaker supports posting the watchmaker status to status providers. Watchmaker status values are one of: ‘Running’, ‘Failed’, or ‘Completed’. Each status provider defines what it means to “post the status”. Currently, the supported provider types include: ‘aws’ and ‘azure’. These status providers both post the status as a tag to the instance/VM.

Providers have the ability to detect whether the system is compatible with the
provider type. In order to post status, the system running watchmaker must be compatible
with the status provider type. For example, the ‘azure’ provider will be skipped
when watchmaker is running on an AWS EC2 instance, and vice versa.

See the installation page for prerequisites for using this feature.

	IAM Role and Policy An AWS Role and Policy that allows the instance to create tags must be attached to the instance. The minimal policy below has been tested in commercial and govcloud.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:<PARTITION>:ec2:<REGION>:<ACCOUNT_ID>:instance/${ec2:InstanceID}",
 "Condition": {
 "StringLike": {
 "ec2:SourceInstanceARN": "arn:<PARTITION>:ec2:<REGION>:<ACCOUNT_ID>:instance/${ec2:InstanceID}"
 }
 }
 }
]
}

	Policy Policy that allows adding or replacing tag on resource see Microsoft Azure Tag Policy [https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/tag-policies] for more info.

Note

Note: Support for the ‘azure’ status provider is provisional. If you use it and encounter problems, please open an issue on the GitHub repository!

Parameters supported by status

	providers ((list of maps)): List of providers

	key (string): Status key to use e.g. WatchmakerStatus

	required (boolean): Required status, when True and provider_type is detected, watchmaker raises an error if unable to update status

	provider_type (string): Environment provider type e.g. aws or azure

Example:

status:
 providers:
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'aws'
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'azure'

Config.yaml Worker Nodes

Watchmaker includes the workers listed below. See the corresponding sections
for details on their configuration parameters.

	salt

	yum (linux-only)

salt worker

Parameters supported by the Salt Worker:

	admin_groups (list): The group(s) that you would like the admin accounts
placed within.

	admin_users (list): The user(s) that would be created as admins.

	computer_name (string): The computer or hostname that should be applied.

	computer_name_pattern (string): The pattern the computer_name value must match to be considered a valid name.
Pattern is used to validate computer name and fail fast on invalid names. In addition, this value will be set as the salt grain name-computer:pattern, to be used by the name-computer formula.

	environment (string): Set for the environment in which the system is
being built.

	valid_environments (list): The list of environments considered valid
for the environment parameter.

	ou_path (string): Specifies the full DN of the OU where the computer
account will be created when joining a domain.

ou_path: "OU=Super Cool App,DC=example,DC=com"

	pip_install (list): The Python package(s) that formulas require.

pip_install:
 - hvac
 - numpy

	pip_args (list): Options to pass to salt pip.install when installing python packages. See the salt docs [https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.pip.html#salt.modules.pip.install] for all options.

linux:
 - salt:
 pip_args:
 - pre_releases=True

	pip_index (string): Base URL of Python Package Index.

	salt_states (string, comma-separated): User-defined salt states to
apply.

salt_states: highstate,foo,bar

	exclude_states (string, comma-separated): States to exclude from
execution of salt states.

	user_formulas (dict): Map of formula names and URLs to zip archives of
salt formulas. These formulas will be downloaded, extracted, and added to
the salt file roots. The zip archive must contain a top-level directory
that, itself, contains the actual salt formula. To “overwrite” bundled
submodule formulas, make sure the formula name matches the submodule name.

user_formulas:
 foo-formula: https://path/to/foo.zip

	salt_debug_log (string): Path to the debug logfile that salt will write
to.

	salt_content (string): URL to the Salt content file that contains
further configuration specific to the salt install.

	salt_content_path (string): The path within the Salt content file
specified using salt_content where salt files are located.
Can be used to provide the path within the archive file where
the Salt configuration files are located.

	install_method (string): (Linux-only) The method used to install Salt.
Currently supports: yum, git

	bootstrap_source (string): (Linux-only) URL to the salt bootstrap
script. This is required if install_method is set to git.

	git_repo (string): (Linux-only) URL to the salt git repo. This is
required if install_method is set to git.

	salt_version (string): (Linux-only) A git reference present in
git_repo, such as a commit or a tag. If not specifid, the HEAD of the
default branch will be used.

	installer_url (string): (Windows-only) URL to the Salt Minion installer
for Windows.

yum worker (linux-only)

Parameters supported by the Yum Worker:

	repo_map (list of maps): There be dragons here! Please be careful making
changes to the default config. Thoroughly test your configuration. The
default config specifies yum repos that contain the salt-minion. If the
default repos are not included, and the salt-minion is not available, the
Salt Worker will fail. You can add repos here that you would like enabled,
but be wary of removing the default repos. Each map must contain the
following keys:

	dist (list): Distributions that would install this repo. Some repos
are supported by multiple distros. (Currently supported distros are
redhat, centos, and amazon.)

	el_version (_string_): The Enterprise Linux version for this repo,
as in el6 or el7. Expected values are '6' or '7'.

	url (string): URL location of the repo file to be added to the
system. This file will be copied to /etc/yum.repos.d/

Example:

repo_map:
 - dist:
 - redhat
 - centos
 el_version: 6
 url: http://someplace.com/my.repo

Downloading config files from Amazon S3

Watchmaker has support for downloading files from Amazon S3. This is useful for
implementations where parts of the Watchmaker config are hosted privately. In order
to use this feature, be sure the necessary prerequisites are installed (see the
installation page).

This feature simply uses the “S3 URL” of the object in the S3 bucket. Such URLs
take the form: s3://<bucket>/<key>. For example, if you wanted to host a custom
config and custom salt content, you could include the salt-content S3 URL in your
Watchmaker config:

all:
 - salt:
 salt_content: s3://path/to/salt-content.zip

And then call Watchmaker on the CLI with the --config argument:

watchmaker --config s3://path/to/config.yaml

Example config.yaml

This example can be used to construct your own config.yaml file. The
Cloudarmor repo [https://watchmaker.cloudarmor.io/list.html] provides yum repo definitions and installers for a few salt
versions.

watchmaker_version: ">= 0.24.0.dev"
all:
 - salt:
 admin_groups: null
 admin_users: null
 computer_name: null
 environment: null
 ou_path: null
 salt_content: null
 salt_states: Highstate
 user_formulas:
 # To add extra formulas, specify them as a map of
 # <formula_name>: <archive_url>
 # The <formula_name> is the name of the directory in the salt file_root
 # where the formula will be placed. The <archive_url> must be a zip
 # file, and the zip must contain a top-level directory that, itself,
 # contains the actual salt formula. To "overwrite" submodule formulas,
 # make sure <formula_name> matches submodule names. E.g.:
 #ash-linux-formula: https://s3.amazonaws.com/salt-formulas/ash-linux-formula-master.zip
 #scap-formula: https://s3.amazonaws.com/salt-formulas/scap-formula-master.zip

linux:
 - yum:
 repo_map:
 #SaltEL6:
 - dist:
 - redhat
 - centos
 el_version: 6
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/2019.2.8/salt-reposync-el6.repo
 - dist: amazon
 el_version: 6
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/2019.2.8/salt-reposync-amzn.repo
 #SaltEL7:
 - dist:
 - redhat
 - centos
 el_version: 7
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/3004.2/salt-reposync-el7-python3.repo
 - salt:
 salt_debug_log: null
 install_method: yum
 bootstrap_source: null
 git_repo: null
 salt_version: null

windows:
 - salt:
 salt_debug_log: null
 installer_url: https://watchmaker.cloudarmor.io/repo/saltstack/salt/windows/Salt-Minion-3004.2-1-Py3-AMD64-Setup.exe

status:
 providers:
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'aws'
 - key: 'WatchmakerStatus'
 required: False
 provider_type: 'azure'

 Usage

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Usage

watchmaker from the CLI

Once Watchmaker is installed and a
configuration file has been created (or you have decided
to use the default configuration), using Watchmaker as a CLI utility is as
simple as executing watchmaker. Below is the output of watchmaker --help,
showing the CLI options.

In addition to the below options, any setting supported by the configfiguration file
can be passed on the CLI. Some settings from the configuration file are not listed
in the --help output, which displays only the most frequently used options. To
pass any such “hidden” CLI argument, just precede it with -- and convert an
underscore to a dash. For example, to pass the salt_content argument on the CLI,
use watchmaker <other options> --salt-content <content-url>. Arguments passed
on the CLI always override the corresponding setting in the configuration file
(see configuration for precedence).

watchmaker --help
Usage: watchmaker [OPTIONS]

 Entry point for Watchmaker cli.

Options:
 --version Show the version and exit.
 -c, --config TEXT Path or URL to the config.yaml file.
 -l, --log-level [info|debug|critical|warning|error]
 Set the log level. Case-insensitive.
 -d, --log-dir DIRECTORY Path to the directory where Watchmaker log
 files will be saved.
 -n, --no-reboot If this flag is not passed, Watchmaker will
 reboot the system upon success. This flag
 suppresses that behavior. Watchmaker
 suppresses the reboot automatically if it
 encounters a failure.
 -s, --salt-states TEXT Comma-separated string of salt states to
 apply. A value of 'None' will not apply any
 salt states. A value of 'Highstate' will
 apply the salt highstate.
 -A, --admin-groups TEXT Set a salt grain that specifies the domain
 groups that should have root privileges on
 Linux or admin privileges on Windows. Value
 must be a colon-separated string. E.g.
 "group1:group2"
 -a, --admin-users TEXT Set a salt grain that specifies the domain
 users that should have root privileges on
 Linux or admin privileges on Windows. Value
 must be a colon-separated string. E.g.
 "user1:user2"
 -t, --computer-name TEXT Set a salt grain that specifies the
 computername to apply to the system.
 -e, --env TEXT Set a salt grain that specifies the
 environment in which the system is being
 built. E.g. dev, test, or prod
 -p, --ou-path TEXT Set a salt grain that specifies the full DN
 of the OU where the computer account will be
 created when joining a domain. E.g.
 "OU=SuperCoolApp,DC=example,DC=com"
 --help Show this message and exit.

Note: The -c/--config switch supports the use of s3:// URLs. However, in order for such URLs to be treated as valid, it will be necessary to include the boto3 Python module: if leveraging userData for either Windows or Linux (as below), include it on the same pip install line used to install watchmaker; if executing interactively (or by other non userData means), ensure that the relevant system-preparation processes performed to install watchmaker also include installation of the boto3 module prior to invoking the watchmaker utility. Failure to ensure presence of the boto3 Python module when referencing s3:// URIs will result in logged-failures similar to:

2023-06-22 14:26:59,192 [backoff][INFO][4908]: Backing off urlopen_retry(...) for 0.6s (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [backoff][ERROR][4908]: Giving up urlopen_retry(...) after 5 tries (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [watchmaker.config][CRITICAL][4908]: Could not read config file from the provided value "s3://<BUKKIT>/<PREFIX>/config.yaml"! Check that the config is available.

watchmaker as a standalone package (Beta feature)

Standalone packages are a beta feature and may not function in all
environments.

Once a Watchmaker standalone executable has been
downloaded and a
configuration file has been created (or you have decided
to use the default configuration), use Watchmaker similarly to the CLI
utility.

For example, on Linux, you can view the CLI options (shown above) using
the same flag.

./watchmaker --help

From Windows, similarly, execute Watchmaker by running it from the command line:

PS C:\wam> watchmaker.exe --help

watchmaker in AWS

watchmaker as EC2 userdata

Calling Watchmaker via EC2 userdata is a variation on using it as a CLI
utility. The main difference is that you must account for installing Watchmaker
first, as part of the userdata. Since the userdata syntax and dependency
installation differ a bit on Linux and Windows, we provide methods for each as
examples.

Note

The pip commands in the examples are a bit more complex than
necessarily needed, depending on your use case. In these examples, we are
taking into account limitations in FIPS support in the default PyPi repo.
This way the same pip command works for all platforms.

Linux

For Linux, you must ensure pip is installed, and then you can install
watchmaker from PyPi. After that, run watchmaker using any option available
on the CLI. Here is an example:

#!/bin/sh
PYPI_URL=https://pypi.org/simple

Setup terminal support for UTF-8
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8

Install pip
python3 -m ensurepip

Install setup dependencies
python3 -m pip install --index-url="$PYPI_URL" --upgrade pip setuptools

Install Watchmaker
python3 -m pip install --index-url="$PYPI_URL" --upgrade watchmaker

Run Watchmaker
watchmaker --log-level debug --log-dir=/var/log/watchmaker

Alternatively, cloud-config directives can also be used on Linux:

#cloud-config

runcmd:
 - |
 PYPI_URL=https://pypi.org/simple

 # Setup terminal support for UTF-8
 export LC_ALL=en_US.UTF-8
 export LANG=en_US.UTF-8

 # Install pip
 python3 -m ensurepip

 # Install setup dependencies
 python3 -m pip install --index-url="$PYPI_URL" --upgrade pip setuptools

 # Install Watchmaker
 python3 -m pip install --index-url="$PYPI_URL" --upgrade watchmaker

 # Run Watchmaker
 watchmaker --log-level debug --log-dir=/var/log/watchmaker

Windows

For Windows, the first step is to install Python. Watchmaker provides a
simple bootstrap script to do that for you. After installing Python, install
watchmaker using pip and then run it.

<powershell>
$BootstrapUrl = "https://watchmaker.cloudarmor.io/releases/latest/watchmaker-bootstrap.ps1"
$PythonUrl = "https://www.python.org/ftp/python/3.10.11/python-3.10.11-amd64.exe"
$PypiUrl = "https://pypi.org/simple"

Use TLS 1.2+
[Net.ServicePointManager]::SecurityProtocol = "Tls12, Tls13"

Download bootstrap file
$BootstrapFile = "${Env:Temp}\$(${BootstrapUrl}.split('/')[-1])"
(New-Object System.Net.WebClient).DownloadFile("$BootstrapUrl", "$BootstrapFile")

Install python
& "$BootstrapFile" -PythonUrl "$PythonUrl" -Verbose -ErrorAction Stop

Install Watchmaker
python -m pip install --index-url="$PypiUrl" --upgrade pip setuptools
python -m pip install --index-url="$PypiUrl" --upgrade watchmaker

Run Watchmaker
watchmaker --log-level debug --log-dir=C:\Watchmaker\Logs
</powershell>

watchmaker as a CloudFormation template

Watchmaker can be integrated into a CloudFormation template as well. This
project provides a handful of CloudFormation templates that launch instances or
create autoscaling groups, and that install and execute Watchmaker during the
launch. These templates are intended as examples for you to modify and extend
as you need.

Sometimes it is helpful to define the parameters for a template in a file, and
pass those to CloudFormation along with the template. We call those “parameter
maps”, and provide one for each of the CFN templates.

Cloudformation templates

	Linux Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-autoscale]

	Linux Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-instance]

	Windows Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-autoscale]

	Windows Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-instance]

watchmaker in a Terraform module

Watchmaker can also be used with Terraform [https://www.terraform.io/] by
utilizing the Watchmaker AWS Terraform modules [https://github.com/plus3it/terraform-aws-watchmaker]
and passing the required parameters.

Terraform Modules

	Linux Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-autoscale]

	Linux Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-instance]

	Windows Autoscale Group [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-autoscale]

	Windows Instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/win-instance]

Note

Each corresponding Terraform module and CloudFormation template are
grouped together in the same directory.

The CloudFormation templates are integrated within their respective Terraform
module, so they become deployable and manageable from within the Terraform cli.

Variables can be input interactively via the Terraform console or directly to
the Terraform module. An example Terraform file that calls the lx-autoscale
module is shown below.

provider "aws" {}

module "test-lx-instance" {
 source = "git::https://github.com/plus3it/terraform-aws-watchmaker//modules/lx-instance/"

 Name = "tf-watchmaker-lx-autoscale"
 AmiId = "__AMIID__"
 AmiDistro = "__AMIDISTRO__"
}

Additional Watchmaker Terraform examples

	Linux Autoscale Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/lx-autoscale]

	Linux Instance Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/lx-instance]

	Windows Autoscale Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/win-autoscale]

	Windows Instance Example [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/examples/win-instance]

watchmaker in Azure

watchmaker as Custom Script Extension

Custom Script Extension downloads and executes scripts on Azure virtual
machines. For Linux, you run the bash script shown in the section on
Linux. You can store the bash script in Azure Storage or a publicly
available url (such as with S3). Then you execute the stored script with a
command. For example, a JSON string could contain

{
 "fileUris": ["https://path-to-bash-script/run_watchmaker.sh"],
 "commandToExecute": "./run_watchmaker.sh"
}

These parameters can be passed in via Azure CLI or within a Resource Management
Template. For more in-depth information, see Microsoft’s
documentation on Linux [https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-linux].

For Windows, you would execute a PowerShell script in a similar manner as for
Windows (but without the powershell tags). Then you would have the
following parameters:

{
 "fileUris": ["https://path-to-bash-script/run_watchmaker.ps1"],
 "commandToExecute": "powershell -ExecutionPolicy Unrestricted -File run_watchmaker.ps1"
}

For more in-depth information on using Custom Script Extension for Windows, see
Microsoft’s documentation on Windows [https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-windows].

watchmaker as a library

Watchmaker can also be used as a library, as part of another python
application.

import watchmaker

arguments = watchmaker.Arguments()
arguments.config_path = None
arguments.no_reboot = False
arguments.salt_states = None

client = watchhmaker.Client(arguments)
client.install()

Note

This demonstrates only a few of the arguments that are available for the
watchmaker.Arguments() object. For details on all arguments, see the
API Reference.

 Execution Customization

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Execution Customization

This document is intended to help both the watchmaker user-community and watchmaker developers and contributors better understand how to customize the execution of the watchmaker configuration-utility. This will be covered in the documents linked-to from the (below) “Common Scenarios” section.

Background

By default, watchmaker executes a standard set of configuration-tasks. The watchmaker utility primarily leverages SaltStack [https://docs.saltproject.io/en/latest/topics/about_salt_project.html#about-salt] for these configuration-tasks.

The configuration-tasks, themselves, are grouped into sets of related tasks. Related tasks can be things like:

	Performing OS-hardening (e.g., applying STIGs)

	Joining a Linux or Windows host to an Active Directory domain

	Installing/configuring enterprise-mandated software (e.g., anti-virus or other security-tooling)

	etc.

These task-sets are delivered in the form of formulas. From the vendor documentation [https://docs.saltproject.io/en/latest/topics/development/conventions/formulas.html] on formulas:

Formulas are pre-written Salt States. They are as open-ended as Salt States themselves and can be used for tasks such as installing a package, configuring, and starting a service, setting up users or permissions, and many other common tasks.

All official Salt Formulas are found as separate Git repositories in the “saltstack-formulas” organization on GitHub

The watchmaker project follows a similar convention. Formulae specifically authored to work under watchmaker can be found by visiting Plus3 IT’s GitHub [https://github.com/plus3it] and querying for the substring, “-formula [https://github.com/plus3it/?q=-formula&type=all&language=&sort=]”.

Critical Files

Customization-activities will be governed by two, main files: the watchmaker configuration file (a.k.a.,config.yaml) and the Salt content archive (a.k.a., salt-content.zip). Discussion of the files’ contents are as follows:

	Dissecting The config.yaml File

	Salt Contents Archive File

Common Scenarios

The behavior of watchmaker can be easily customized towards several ends. The most-commonly encountered are:

	Modifying Formulae Execution-Parameters

	Modifying List of Executed-Formulas to Meet Site-needs

	Testing Updates to Existing Formulas

	Testing New Formulas

If there are other customization-scenarios that should be included in this document-set, please see the contribution guidance. The contribution document covers how to submit requests for documentation-improvements as well as guidance on how to contribute changes (like further customization documentation).

 Dissecting The config.yaml File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Dissecting The config.yaml File

The stock config.yaml file has five top-level directives or directive-maps:

	watchmaker_version

	all

	linux

	windows

	status

These directives or directive-dictionaries are used to govern the overall behavior of watchmaker’s execution. See the default config.yaml [https://raw.githubusercontent.com/plus3it/watchmaker/main/src/watchmaker/static/config.yaml] file for generic layout and exemplar-content.

The watchmaker_version Directive

This directive applies a compatibility-filter to the watchmaker execution. If the installed version of watchmaker doesn’t meet the version-critera set by this line, watchmaker won’t work with this file’s content. It’s assumed that any watchmaker version that does not match the version-criteria will not (properly) support the configuration directives. Normally, the version is set as “greater than or equal to” string.

The all Map

This map is used to supply default values to both saltstack and to specific SaltStack formulae. The map-keys most likely to be of interest will be:

	valid_environments

	salt_content

	salt_states

	salt_version

	user_formulas

The valid_environments List-Parameter

This list provides a list of names of “environments” that saltstack’s site-customization behavior has been configured to deliver. This will typically be used by environments that wish to customize deployments on an environment-by-environment basis (e.g. where an organization’s development, testing/integration and production environments might have different endpoints to contact for things like configuring authentication) and wish to have a single config.yaml file to be used across all valid deployment-environments.

Typical values will be null,dev, test and/or prod.

	Usage of null indicates no differentiation between environments – that the generic configuration should be applied. This can mean that all the environments leverage the same service-integration information or that each deployment-environment will be governed by a different config.yaml file.

	The others are shorthand for “development”, “testing & integration” and “production”, respectively.

The word “typical” was previously emphasized because any value (other than null) is supported so long as there is a correspondingingly-named content-hierarchy in the site’s custom Salt-content archive file (see the salt-content dictionary-key in the next section). This content-hierarchy needs to exist within the Salt-content archive file at ./pillar/<ENVIRONMENT_NAME> (e.g., a dev environment would have a corresponding ./pillar/dev directory in the Salt-content archive file).

Note

The default environment that watchmaker will apply is specified using the
environment parameter. In the example, this is set to null –
meaning that a generic configuration will be applied. This value is
overridden by requesting a specific environment-configuration by using
either -e <ENVIRONMENT> or --env <ENVIRONMENT> flag and argument
when invoking watchmaker (per the Usage Guide).

The salt_content String-Parameter

This string defines where Watchmaker should attempt to download any site-customization content from. If this value is the literal null, watchmaker will not attempt to download any site-customization content. Otherwise, a valid URI pointing to a customized Salt-content archive should be used. This URI can point to a locally-staged file, an HTTP/HTTPS URL or an S3 URI.

If using an S3 URI, a couple of further requirements apply:

	When installing watchmaker, it will be necessary for the boto3 Python library to be installed

	The to-be-configured system must have read access to the specified S3 URI

By default, watchmaker will extract this archive-file’s contents at /srv/watchmaker/salt (Linux) or C:\Watchmaker\Salt\srv (Windows) the ./ referenced elsewhere in this document will be relative to that extraction-location.

Note

See the Salt Contents Archive File document for a
discussion on the contents and layout of this file.

The salt_states String-Parameter

This parameter is by Watchmaker to invoke SaltStack with the desired states selected for execution. The typical value for this parameter is Highstate. The Highstate value tells watchmaker to invoke SaltStack with the Highstate invoker rather than iterated-states invoker. Invoking Saltstack with the Highstate invoker will cause all available and activated formulas to be selected for execution.

The salt_version String-Parameter

The value for this parameter instructs watchmaker which version of the Saltstack software it should download – or, if the correct version is already installed, skip re-downloading or re-installing. This will correspond to the value returned when salt-call --version is executed (after the watchmaker utility has downloaded and installed SaltStack). See the watchmaker changelog [https://watchmaker.readthedocs.io/en/stable/changelog.html] for guidance on latest supported version of Saltstack.

The user_formulas Dictionary-Parameter

This dictionary-parameter usually has no content. However, if one wishes to customize watchmaker’s execution either by adding further formulae to install or to override installtion of default-formulae’s contents with newer content (e.g., when testing updates to standard formulae), this dictionary should be populated. The expected value will take the form of:

 <FORMULA_NAME>: <DOWNLOAD_URL>

	<FORMULA_NAME> will be used as the installation-location for the formula-contents into the /srv/watchmaker/salt/formulas (Linux) or C:\Watchmaker\Salt\srv\formulas (Windows) directories.

	<DOWNLOAD_URL> will be used as the location from which to download an archive of target formula’s content. This content should be in the form of a ZIP archive. Most frequently, this will be the public download-URL of a GitHub branch’s (or commit-ID’s) ZIP-archived, but any archive-URL that watchmaker has permission to download should work

For example, if one is working on updates to the ash-linux-formula and has made those changes in a GitHub project, one would specify a value of:

 ash-linux-formula: https://github.com/<USER_ID>/<PROJECT_NAME>/archive/refs/heads/<BRANCH_NAME>.zip

The above will cause the content normally loaded at .../formulas/ash-linux-formula to be replaced with the content unarchved from the https://github.com/<USER_ID>/<PROJECT_NAME>/archive/refs/heads/<BRANCH_NAME>.zip archive-URI.

Similarly, if one is working on a new formula, specifying:

 <NEW_FORMULA_NAME>: https://github.com/<USER_ID>/<PROJECT_NAME>/archive/refs/heads/<BRANCH_NAME>.zip

Will cause the content-archive hosted at the specified GitHub URL to be unarcheved at the platform-appropriate .../formulas/<NEW_FORMULA_NAME> directory-path. It should also cause an appropriate update to the SaltStack minion-configuration[1]. If this fails to happen, there is most likely a formatting issue with your user_formulas declaration. The following is (a snippet of) how the declaration should look:

all:
 salt:
 [...elided...]
 user_formulas:
 <FORMULA_NAME>: <SOURCE_URL>

Note that the <FORMULA_NAME> line is indented two spaces from the user_formulas token. If improper indentation is used - for example:

all:
 salt:
 [...elided...]
 user_formulas:
 <FORMULA_NAME>: <SOURCE_URL>

Neither the .../formulas/<NEW_FORMULA_NAME> directory-path will be created nor the minion file updated.

The linux Map

This map contains two top-level keys: yum and salt. Both are also maps.

The yum map instructs watchmaker about where to fetch yum/dnf repository-definition files from. Using the yum:repo_map, watchmaker will perform a lookup using the dist:<distribution> value and el_version value to identify the download url from which to pull the appropriate yum/dnf repository-definition files from

Note

Currently, mappings for Red Hat 7, CentOS 7, Alma Linux 8,
CentOS 8 Stream, Oracle Linux 8, Red Hat 8 and Rocky Linux 8
are defined. Further Enterprise Linux distributions may be supported by
appropriate extension of this map, along with further modifcations to a few
Saltstack formulae.

The salt map is generally not modified for customization or other activities.

The windows Map

Similar to the linux map, the windows map instructs watchmaker about where to fetch the Salt-minion setup-executable for Windows from.

As with the linux map, the salt dictionary is generally not modified for customization or other activities.

The status Map

This map defines the “status” content that watchmaker will attempt to write as a tag to the watchmaker-managed host. Currently, only Amazon EC2s and Azure VMs are supported. Currently, this map defaults to a value of:

status:
 providers:
 - key: WatchmakerStatus
 required: false
 provider_type: aws
 - key: WatchmakerStatus
 required: false
 provider_type: azure

The watchmaker finish/status routines interpret the above to mean, “apply the tag named WatchmakerStatus to the managed-host and set an appropriate completion-status value[2], but do not exit with an error if the tagging-operation fails”.

[1]
The minion-configuration file is found at /opt/watchmaker/salt/minion on Linux hosts and C:\Watchmaker\Salt\conf\minion on Windows hosts.

[2]
The completion-status tagger will set a value of either Completed or Error.

 Salt Contents Archive File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Salt Contents Archive File

The SallStack contents archive contains three main file-hierarchies

	pillar

	states

	winrepo

The pillar Directory-Tree

This directry-hierarchy contains the pillar-data that is used to govern the behavior of executed SaltStack states. If modifying SaltStack states’ behavior from their defaults (or supplying mandatory parameters), place the modifications under this directory-hierarchy.

Any automation-formulae that make reference to Pillar data – typically such formulae will include a pillar.example or pillar.example.yml in their content-root directory – may have their behavior modified through content under this directory-tree. Typically, this directory-tree will contain a common directory-tree and a directory-tree for each supported deployment environment. Thus, if one is creating behavioral-controls for dev, test and prod environments, the pillar directory tree will contain:

	common directory

	dev directory

	prod directory

	test directory

Each formula that should be executed for a given site and environment should reference each formula’s previously-mentioned pillar.example or pillar.example.yml files. Relevant content should be placed into either the common directory’s init.sls files or in the environment-specific init.sls files. See below discussions for which directories should be used for a given method of setting parameter values.

In addition, the top-level directory will contain a top.sls and (optionally) a map.jinja file. These files help Watchmaker’s SaltStack components know what further content to execute.

The top.sls file

The top.sls file-content will typically look like (taken from the watchmaker-salt-content [https://github.com/plus3it/watchmaker-salt-content] project’s pillar/top.sls [https://raw.githubusercontent.com/plus3it/watchmaker-salt-content/master/pillar/top.sls] file):

base:
 'G@os_family:RedHat':
 - common.ash-linux
 - common.scap.elx

 'G@os_family:Windows':
 - common.ash-windows
 - common.netbanner
 - common.scap.windows
 - common.winrepo

What this content does is selects a base set of Saltstack pillar-data to read in. This makes execution-customizations of selected saltstack formulae available for those formulae to consume. In the base-scenario (shown above), SaltStack will use the executing system’s os_family to select which pillar-content to read in. Reading in only platform-relevant content helps reduce the amount of content that Saltstack has to read in.

Note

This value can be queried-for/verified on a host with watchmaker installed by executing:

salt-call -c /opt/watchmaker/salt/ --output text grains.get os_family

On an Enterprise Linux system, this will produce:

local: RedHat

If further execution-customization content is desired to be made available to executing formulae, it may be set up here.

The map.jinja file

The presence/use of a map.jinja file is optional in the pillar root-directory. Any map.jinja file within the pillar hierarchy is designed to facilitate the loading of pillar data. The primary reason for having a map.jinja within the pillar root-directory is if there’s common pillar data that needs to be shared across environments. If there’s a need for such shared content, the pillar subdirectories would reference the shared file at /map.jinja (typically, if they reference a map.jinja file, at all, they will reference their “local” version by pointing at map.jinja).

The common Directory-Tree

As the name suggest, this directory-tree contains parameter-values that should be the same across all configured environments. This directory typically contains one or more subdirectories. Subdirectories will one-for-one match with the common.<NAME> strings found in the top-level pillar directory’s top.sls file. Each sub-directory will contain one or more .sls files that will contain the relevant, common-across-all-environments pillar (per-formula parameter value) data. Thus, if one has a .../pillar/top.sls that looks like (as shown in the top.sls file subsection):

base:
 'G@os_family:RedHat':
 - common.ash-linux
 - common.scap.elx

 'G@os_family:Windows':
 - common.ash-windows
 - common.netbanner
 - common.scap.windows
 - common.winrepo

The .../pillar/common subdirectory will need to have the subdirectories:

	ash-linux

	ash-windows

	netbanner

	scap[1]

	winrepo

Each of the above-listed subdirectories – with the exception of the scap subdirectory will have an init.sls file[2]. Each of these files will contain parameter-dictionaries that align with invoked formulae’s pillar.example or pillar.example.yml files.

To illustrate behavior tailoring, use the .../pillar/common/ash-linux/init.sls file with contents similar to:

{%- set os = salt.grains.filter_by({
 'AlmaLinux': 'centos',
 'CentOS': 'centos',
 'CentOS Stream': 'centos',
 'OEL': 'ol',
 'RedHat': 'rhel',
 'Rocky': 'centos',
}, grain='os') %}

ash-linux:
 lookup:
 scap-profile: stig
 scap-cpe: /root/scap/content/openscap/ssg-rhel{{ grains['osmajorrelease'] }}-cpe-dictionary.xml
 scap-xccdf: /root/scap/content/openscap/ssg-{{ os }}{{ grains['osmajorrelease'] }}-xccdf.xml
 scap-ds: /root/scap/content/openscap/ssg-{{ os }}{{ grains['osmajorrelease'] }}-ds.xml

Then compare it to the ash-linux project’s pillar.example [https://raw.githubusercontent.com/plus3it/ash-linux-formula/master/pillar.example] file. The project’s example file attempts to show available parameters whose values can be set/overridden and how they fit into the parameter-map’s structure. In the above, the ash-linux:lookup:scap-profile parameter’s value is set to stig. However, if one consult’s the formula-project’s pillar.example file, it’s found that any of the values stig-rhel7-server-gui-upstream, standard, pci-dss, C2S or common are valid[3].

As such, if one wanted to make the ash-linux-formula automation use a hardening-profile other than stig, one could specify any of the values found in that pillar.example file (e.g., change stig to pci-dss to use the pci-dss hardening-profile, instead).

Similarly, if one wanted to change where relevant SCAP-content should be loaded from the scap-cpe, scap-xccdf and/or scap-ds values could all be modified.

The <environment> Directory-Tree(s)

The <environment> directory-trees work similarly to the common directory tree. The primary difference is focus. Where the common directory-tree sets broad-scope behaviors via pillar-variables’ parameter/values, the <environment> directory-trees set more-limited scopes’ behaviors. These directory-trees are intended to align with an infrastructure-as-code environment where an organization has multiple, similar environments that each have specific needs (e.g., to point to per-environment CSP endpoints, security-services servers, etc., install different sets of software or apply different security-benchmarks).

The structure for the <environment> directory-trees is much simpler than that for the common directory tree. There are no subdirectories under each <environment> directory, just a single init.sls file. These typically take the form of:

{%- load_yaml as os_families %}
RedHat:
 <FORMULA_1_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>
 ...
 <FORMULA_N_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>
Windows:
 <FORMULA_1_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>
 ...
 <FORMULA_N_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>

Each of the <VALUE>s listed above may be string, list, dictionary or map data-types. The data-type will be dictated by the needs of the formula and illustrated in the relevant formulae’s pillar.example or pillar.example.yml files. For example, to configure the mcafee-agent-formula [https://github.com/plus3it/mcafee-agent-formula/] to properly configure Trellix to run on Windows and Linux hosts in the prod environment, one would have a .../pillar/prod/init.sls file that looked something like:

{%- load_yaml as os_families %}
RedHat:
 <FORMULA_1_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>
 trellix-agent:
 lookup:
 source: s3://enterprise-software/mcafee/mcafee-agent/5.7.9/install.sh
 source_hash: s3://enterprise-software/mcafee/mcafee-agent/5.7.9/install.sh.SHA512
 client_in_ports:
 - 5575
 client_out_ports:
 - 80
 - 443
 ...
 <FORMULA_N_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>
Windows:
 <FORMULA_1_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>
 trellix-agent:
 lookup:
 version: '5.7.9.139'
 winrepo:
 versions:
 '5.7.9.139':
 installer: s3://enterprise-software/mcafee/mcafee-agent/5.7.9/FramePkg.exe
 ...
 <FORMULA_N_NAME>:
 lookup:
 <var1>: <VALUE>
 <var2>: <VALUE>
 ...
 <varN>: <VALUE>

The above would instruct the mcafee-agent-formula (see the automation’s pillar.example [https://raw.githubusercontent.com/plus3it/mcafee-agent-formula/master/pillar.example] file for insight) automation to:

	Linux: Download and execute the the Trellix 5.7.9 installer from the s3://enterprise-software/mcafee/mcafee-agent/5.7.9/ bucket-path – and validate the file’s integrity using the checksum file install.sh.SHA512 from the same S3 bucket-path – and set up firewalld inbound exceptions for port tcp/5575 and outbound exceptions for ports 80/tcp and 443/tcp.

	Windows: Download and execute the Trellix “Frame” 5.7.9.139 package’s executable-installer from the s3://enterprise-software/mcafee/mcafee-agent/5.7.9/ bucket-path.

Similar init.sls content would be needed for any other Watchmaker formula used to install, configure or manage the execution of software.

The states Directory-Tree

This directory-hierarchy governs which Saltstack states will be executed from the available SaltStack formulae. Typically, only modification to this directory’s top.sls is needed:

	States that are not desired for execution can be commented out or wholly removed.

	States that require conditional-execution can be placed inside of appropriate (Jinja) condition-blocks

	States that are beyond what’s defined in the default top.sls can be added here to ensure their execution during a full run of watchmaker

	If a change in execution-order is desired, alter the list-order: listed states are executed serially in first-to-last order

The winrepo Directory-Tree

This directory-hierarchy contains windows-specific automation-content. Unlike the pillar and states directory-trees, content in this directory-tree is not expected to be multi-platform.

[1]
In the case of the scap directory (and content that functions similarly), instead of an init.sls file, it will instead have .sls files named to match what’s in the top.sls file. In the illustrated case, that means a elx.sls and a windows.sls file.

[2]
Formulae whose pillar-data is platform-separated such as the scap directory’s typically will not need an init.sls file as the per-platform .sls files will directly-referenced and subsume the init.sls file’s functionality.

[3]
While efforts are made to keep the examples up to date and correct, it’s possible that “valid” parameter-values listed in a given watchmaker-formula project’s pillar.example file will become invalid over time. If one encounters incorrect or missing exmaple parameter content in a given formula project’s pillar.example file, please open an issue against that project.

 Modifying Formulae Execution-Parameters

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Modifying Formulae Execution-Parameters

The watchmaker utility bundles several SaltStack formulae. These bundled-formulae’s behaviors are, in turn, governed, by a set of Pillar [https://docs.saltproject.io/en/getstarted/config/pillar.html]-data that are also bundled with the watchmakerutility: pillar-data is how SaltStack states’ behaviors may be modified. Sites that wish to either override the bundled-formulae’s default behaviors or wish to run additional SaltStack formulae that are not in the default formula-bundle – and need to provide supporting behvior-tailoring – can do so by creating custom pillar-data.

Reference

When customizing Pillar content, it will also be necessary to use a site-specific, YAML-formatted configuration-file. Per the “Usage” document’s “from the CLI” section, this file is typically named config.yaml. Any file name can be used so long as it matches what is passed via the -c/--config argument to the watchmaker utility. Further, this configuration-file may be specified as hosted on the local filesystem, any HTTP/HTTPS URL or an S3-hosted URI.

The watchmaker pillar-data is delivered by way of a ZIP-formatted content-archive. While this archive-file typically takes the name salt-content.zip, any filename may be used so long as it’s properly referenced in the watchmaker configuration-file’s salt_content directive (see the config.yaml discussion for a deeper dive into this file’s contents, including a discussion of the salt_content parameter). The following exmaple configuration-file – with salt_content directive highlighted – is taken from watchmaker project [https://github.com/plus3it/watchmaker/blob/main/src/watchmaker/static/config.yaml]:

watchmaker_version: ">= 0.27.2.dev"

all:
 - salt:
 admin_groups: null
 admin_users: null
 computer_name: null
 environment: null
 ou_path: null
 salt_content: null
 salt_states: Highstate
 salt_version: '3006.1'
 user_formulas:
 # To add extra formulas, specify them as a map of
 # <formula_name>: <archive_url>
 # The <formula_name> is the name of the directory in the salt file_root
 # where the formula will be placed. The <archive_url> must be a zip
 # file, and the zip must contain a top-level directory that, itself,
 # contains the actual salt formula. To "overwrite" submodule formulas,
 # make sure <formula_name> matches submodule names. E.g.:
 #ash-linux-formula: https://s3.amazonaws.com/salt-formulas/ash-linux-formula-master.zip
 #scap-formula: https://s3.amazonaws.com/salt-formulas/scap-formula-master.zip

linux:
 - yum:
 repo_map:
 #SaltEL7:
 - dist:
 - redhat
 - centos
 el_version: 7
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/3006.1/salt-reposync-el7-onedir.repo
 #SaltEL8:
 - dist:
 - almalinux
 - centos
 - oracle
 - redhat
 - rocky
 el_version: 8
 url: https://watchmaker.cloudarmor.io/yum.defs/saltstack/salt/3006.1/salt-reposync-el8-onedir.repo
 - salt:
 pip_install:
 - dnspython
 salt_debug_log: null
 install_method: yum
 bootstrap_source: null
 git_repo: null
 salt_version: null

windows:
 - salt:
 salt_debug_log: null
 installer_url: https://watchmaker.cloudarmor.io/repo/saltstack/salt/windows/Salt-Minion-3006.1-Py3-AMD64-Setup.exe

status:
 providers:
 - key: "WatchmakerStatus"
 required: False
 provider_type: "aws"
 - key: "WatchmakerStatus"
 required: False
 provider_type: "azure"

Note

If creating a new config-file for customizing your site’s watchmaker-execution, it’s recommended that config-file content not be copied from this document but from the watchmaker project, directly.

As with the configuration-file (passed via the -c/--config argument to the watchmaker utility), this file may be specified as hosted on the local filesystem, any HTTP/HTTPS URL or an S3-hosted URI.

Site-Specific Parameters

To implement localized-behavior with watchmaker, it will be necessary to change the salt_content paramter’s value from null to the location of a SaltStack content-bundle. As mentioned previously, the content-bundle should be delivered in the form of a ZIP-formatted content-archive.

The the overall structure and format of the archive-bundle is discussed in the Salt Contents Archive File document. Site-specific parameters – and associated values – would be handled within the archive-bundle’s Pillar data contents.

Bundle locations

Watchmaker currently supports pulling the Saltstack content-bundles from three types of locations: HTTP(S) server, S3 bucket or filesystem-path. The salt_content paramter’s value is stated as a URI-notation. See the following subsections for guidance on location-specification.

It’s worth noting that Watchmaker has not been tested to (directly) support accessing CIFS- or NFS-based network-shares. If it is desired to access a content-bundle from such a hosting-location, it is recommended to include share-mounting steps in any pre-Watchmaker execution-steps. Once the network-share is mounted, then watchmaker can access the content-bundle as though it was a locally-staged bundle (see below).

S3-Hosted Bundle

An S3-hosted bundle would be specified like:

s3://<BUCKET_NAME>/<FILE_PATH_PREFIX>/<ARCHIVE_FILE_NAME>

For example, “s3://my-site-bukkit/watchmaker/salt-content.zip”

Note

For S3-hosted URIs, it will be necessary to have ensured that the
Python Boto3 modules have been installed prior to executing watchmaker

Webserver-Hosted Bundle

A bundle hosted on an HTTP server would be specified like:

https://<WEB_SERVER_FQDN>/<FILE_PATH_PREFIX>/<ARCHIVE_FILE_NAME>

For example, “https://wamstuff.my-site.local/watchmaker/salt-content.zip”

Note

Either HTTP or TLS-encrypted HTTP URIs are supported.

If potentially-sensitive data will be contained in the site-localization
archive-file, it is recommended that access to this file be restricted.
This can typically be done with authorized IP-blocks, API tokens or other
“simple” authentication credentials. If this limitation comes in the form of
an API token or a simple-auth credential, it will be necessary to specify
the token or credentials as part of the HTTP URI.

Locally-staged Bundle

A locally-staged bundle (presumably downloaded and placed as part of a previously-executed launch-time automation-task) would be specified like:

file:///<FILESYSTEM_PATH_PREFIX>/<ARCHIVE_FILE_NAME>

For example, “file:///var/tmp/watchmaker/salt-content.zip”

 Modifying List of Executed-Formulas to Meet Site-needs

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Modifying List of Executed-Formulas to Meet Site-needs

The watchmaker utility bundles several SaltStack formulae. Which formulae are executed, in what order and under what conditions are governed by the .../states/top.sls file:

	On Linux systems, the value of .../ will be /srv/watchmaker/salt

	On Windows systems, the value of .../ will be C:\Watchmaker\Salt\srv

A typical .../states/top.sls will look something like:

{%- set environments = ['dev', 'test', 'prod', 'dx'] %}

base:
 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
 - scap.scan

 'G@os_family:Windows':
 - name-computer
 - pshelp
 - netbanner.custom
 - ash-windows.stig
 - ash-windows.iavm
 - ash-windows.delta
 - scap.scan
 - ash-windows.custom

Adding, removing or re-ordering entries in this list modifies which formulae watchmaker executes and in what order it executes them

Adding “Extra” Formulae to the Execution-List

In order to add a new formula to Wachmaker’s execution-list, edit the .../states/top.sls file. For cross-platform formulae, ensure appropriate entries exist under both the base:G@os_family:RedHat and base:G@os_family:Winodws lists. To add a formula to the execution list, insert the formula-name into the list just as the already-configured formulae are. For example, to add the [cribl-agent-formula] to the RedHat execution, modify the above RedHat stanza to look like:

 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
 - cribl-agent
 - scap.scan

If there are any futher conditionals that should be placed on the formula being added, surround the target-formula’s list entry with suitable, Jinja-based conditional-operators. For example, if you want to ensure that the cribl-agent is executed when a suitable environment-value is specified, update the preceeding example to look like:

 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
{%- if salt.grains.get('watchmaker:enterprise_environment') | lower in environments %}
 - cribl-agent
{%- endif %}
 - scap.scan

Removing Formulae the Execution-List

In order to prevent a formula from being automatically run by Watchmaker, edit the .../states/top.sls file and either wholly remove the referenced-formula from the list or comment it out. To make the scap-formula’s scan state not run[1], modify the example .../states/top.sls file to look like:

base:
 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm

or:

 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
- scap.scan

Changing Formulae the Execution-Order

There may be times where the system-owner will want Watchmaker to run formulae in a different order than previously-configured. The .../states/top.sls specifies formulae and states’ execution-order serially. The order is top-to-bottom (with items closer to the top of the list executed earlier and those closer to the bottom of the lis executed later). To change the order that formulae are executed, change the order of the execution-list.

{%- set environments = ['dev', 'test', 'prod', 'dx'] %}

base:
 'G@os_family:RedHat':
 - name-computer
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
 - scap.content
 - scap.scan

 'G@os_family:Windows':
 - name-computer
 - pshelp
 - netbanner.custom
 - ash-windows.stig
 - ash-windows.iavm
 - ash-windows.delta
 - ash-windows.custom
 - scap.scan

In the above (when compared to the .../states/top.sls file near the top of this document), the Linux scap.content formula-state and the Windows scap.scan formula-state have been moved to a later executions. This is an atypical change, but is provided for completeness’ sake.

Note

Some times, particularly when creating new states, it is dicsovered that
some SaltStack formulae or states are not as idempotent as they were
intended to be. Re-ordering the executions may work around issues caused by
an insufficient degree of idempotency in one or more formulae.

It is generally recommended, if idempotency-issues require execution-orders
be modified, that the insufficiently-idempotent SaltStack formulae or states
be refactored to improve their idempotency.

[1]
This is often done by system-owners that value launch-time provisioning-automation speed over the presence of an intial hardening-scan report on the launched-systems hard drive.

 Testing Updates to Existing Formulas

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Testing Updates to Existing Formulas

The formulae-contents that are installed and configured for use by Watchmaker can be modified through a custom config.yaml file. This is done through the config.yaml file’s user_formula dictionary-parameter (see: the discussion of the config.yaml file’s user_formulas parameter and take special note of guidance around file-formatting and indenting). This parameter may be used to enable the setup of “in progress” updates to existing formulae. This is done by specifying dictionary-values for user_formulas in a custom config.yaml file:

all:
 salt:
 [...elided...]
 user_formulas:
 <TEST_FORMULA_1>: <TEST_FORMULA_ARCHIVE_1_URI>
 <TEST_FORMULA_2>: <TEST_FORMULA_ARCHIVE_2_URI>
 [...elided...]
 <TEST_FORMULA_N>: <TEST_FORMULA_ARCHIVE_N_URI>

Note

While multiple formulae are shown in the above snippet, it’s not generally
recommended to use this method for more than one, formula at a time. The
above is primarily to illustrate that the user_formulas parameter is a
dictionary.

Once the custom config.yaml file is in the desired state, it can be uploaded to an S3-based testing-bucket, web server[1] or even staged locally within the testing-system.

About Testing Updates

To the greatest extent possible, formulae should be portable. It is recommended that when testing updates, the developer:

	Tests with a bog-standard configuration (the custom config.yaml file’s salt_content parameter’s value is set to null)

	Tests with the target-environment’s or target-environments’ custom salt-content.zip file(s)

	Tests with a customized version of the bog-standard salt-config.zip file if to-be-tested formula’s config-inputs have been changed

	Tests with a salt-config.zip file cloned from the target-environment’s or target-environments’ custom salt-config.zip file if to-be-tested formula’s config-inputs have been changed

Exercising across environments, in this way, will better assure that proposed updates do not break an existing formula’s portability.

About Hosting of Modified Formula-Content

The modified formulae’s contents can be installed from any Watchmaker-supported source-type – S3-hosted, web server hosted or local files. However, it is expected that most personnel attempting to test modifications to existing formulae will want to load that modified content directly from their development content-management system (CMS). To have watchmaker load content directly from the source CMS:

	Visit the CMS (GitHub.Com when devloping for the main Watchmaker project)

	Navigate to the content-developer’s source fork/branch

	Find the https:// URL of fork/branch’s ZIP-archive of the code to be tested.

	Use the value from the prior step as the value for <TEST_FORMULA_ARCHIVE_URI>

Modification of existing/already-integrated formulae’s content typically takes place on GitHub.Com. As of this document’s authoring date, the above process looks like:

	Browse to https://www.github.com/plus3it/<FORMULA_NAME>

	Click on the down-arrow on the Fork button to bring up the Existing Forks list

	Click on the developer’s fork

	On the landing-page for the developer’s fork, click on the branch button’s down-arrow[2]. This opens the Switch branches/tags dropdown

	Select the desired branch from the Switch branches/tags dropdown

	Click on the Code button’s down-arrow. Right-click on the Download ZIP text in the drop-down that the down-arrow opens. This opens a context-menu of link-actions.

	Click on the Copy Link Address menu-option (if using a browser other than Chrome, the specific menu-option may be different, but the equivalent action should be obvious) to copy the branch-archive’s URL into your system’s copy-buffer.

	Paste the branch-archive’s URL (from your system’s copy-buffer) as the <TEST_FORMULA_ARCHIVE_URI> value in your custom config.yaml file

Warning

If you created your modification-branch in a private fork, it will be
necessary to create an API-token that grants your test-host the ability to
access the archive-URL. Creating such tokens is outside the scope of this
document.

Execution With Standard Configuration-Options

Assuming that the executing system has access to the specified URI(s), watchmaker will:

	Download the requested formula ZIP-archive(s)

	Unarchive them to the .../formulas directory – replacing the standard contents with the testing-contents

As an already-integrated formula, it should already be executed when a full/generic Watchmaker-run is requested.

While the modified formula should execute in place of the already-integrated formula contents as part of a full/generic Watchmaker-run, it will save testing-time to execute only the modified formula. This can be done by explicitly selecting only the modified-formula for execution using a method similar to:

	Linux invocation:

watchmaker \
 -c s3://<TESTING_BUCKET>/config.yaml \
 -s <FORMULA_NAME> \
 --log-level debug --log-dir=/var/log/watchmaker

	Windows invocation:

watchmaker --log-level debug --log-dir=C:\Watchmaker\Logs -c s3://<TESTING_BUCKET>/config.yaml -s <FORMULA_NAME>

The modified formula’s execution will be logged into the directory requested via the manual invocation.

Execution With Modified/New Configuration-Options

Because Watchmaker will overwrite existing formula-content with the referenced formula-content, it should only be necessary to execute the updated formula with a custom salt-content.zip if:

	One wishes to test with specific testing-values for existing formula-parameters

	The formula-updates add new parameters

	The formula-updates rename existing parameters

	The formula-updates change existing parameters’ data-types.

If executing to cover one of the above scenarios, it will be necessary to either manually update the .../pillar directory’s contents with the appropiate data (see: The pillar Directory-Tree) or create a custom salt-config.zip file and reference it from the custom config.yaml file.

Final Notes

If modification of an existing formula adds or removes parameters, renames existing parameters or changes existing parameters’ data-types, it is critical that the formula-project’s pillar.example or pillar.example.yaml file be updated to reflect these changes.

[1]
If hosting on a web server and configuration content may be deemed sensitive, apply suitable access controls to the file and specify the fetch-URL with the appropriate authentication-elements.

[2]
This button will typically start out labeled either master or main (depending how old the formula’s project is)

 Testing New Formulas

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Testing New Formulas

The formulae-contents that are installed and configured for use by Watchmaker can be modified through a custom config.yaml file. This is done through the config.yaml file’s user_formula dictionary-parameter (see: the discussion of the config.yaml file’s user_formulas parameter and take special note of guidance around file-formatting and indenting). This parameter may be used to enable the setup of new, yet-to-be integrated formulae[1]. This is done by specifying dictionary-values for user_formulas in a custom config.yaml file:

all:
 salt:
 [...elided...]
 user_formulas:
 <NEW_FORMULA_1>: <NEW_FORMULA_ARCHIVE_1_URI>
 <NEW_FORMULA_2>: <NEW_FORMULA_ARCHIVE_2_URI>
 [...elided...]
 <NEW_FORMULA_N>: <NEW_FORMULA_ARCHIVE_N_URI>

Note

While multiple new formulae are shown in the above snippet, it’s not
generally recommended to use this method for more than one, new formula at
a time. The above is primarily to illustrate that the user_formulas
parameter is a dictionary

Once the custom config.yaml file is in the desired state, it can be uploaded to an S3-based testing-bucket, web server[2] or even staged locally within the testing-system.

About Testing New Formulae

To the greatest extent possible, formulae should be portable. It is recommended that when testing updates, the developer:

	Tests without use of a custom salt-content.zip

	Tests using custom Pillar-data – either by hand-modifying Pillar content or using a modified salt-content.zip cloned from the target deployment-environments’ salt-content.zip – for one or more targeted deployment-environments

Exercising across environments, in this way, will better assure that newly-created formulae operate as portably as expected prior to the newly-created formulae’s integration into standard or site-specific Watchmaker executions.

Execution - Generic/Defaults

Assuming that the executing system has access to the specified URIs, watchmaker will:

	Download the requested formula ZIP-archive(s)

	Unarchive them to the .../formulas directory

	Update the .../minion file’s file_roots:base list

If the site’s salt-content.zip has not been modified to cause execution, the new formula can be explicitly executed using a method similar to:

	Linux invocation:

watchmaker \
 -c s3://<TESTING_BUCKET>/config.yaml \
 -s <FORMULA_NAME> \
 --log-level debug --log-dir=/var/log/watchmaker

	Windows invocation:

watchmaker --log-level debug --log-dir=C:\Watchmaker\Logs -c s3://<TESTING_BUCKET>/config.yaml -s <FORMULA_NAME>

The new formula’s execution will be logged into the directory requested via the manual invocation.

Execution - Tailored

If the new formula has variable configuration-data that needs to come from pillar, it will be necessary to either manually update the .../pillar directory’s contents with the appropiate data (see: The pillar Directory-Tree) or create a custom salt-config.zip file and reference it from the custom config.yaml file.

Final Notes

All formulae that have Pillar-settable or Pillar-overridable parameters should include a pillar.example or pillar.example.yaml file with the project’s content. This file should be placed in the project’s root-directory. The file should be valid YAML with explanatory comments for each configuration item. If a new formula’s execution-customizability is more complex than is easily accommodated by comment-entries in the example Pillar YAML file, add a README_PillarContents.md file to the project. This file should contain sufficiently-expository content to allow new users of the formula to fully understand how to tailor the formulae’s execution to their site’s needs.

[1]
“Yet-to-be-integrated” formulae are any formulas that have not yet been set up for automated execution as part of a full Watchmaker run. See the Modifying Formulae Execution-Parameters document for tips.

[2]
If hosting on a web server and configuration content may be deemed sensitive, apply suitable access controls to the file and specify the fetch-URL with the appropriate authentication-elements.

 Troubleshooting Guidance

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Troubleshooting Guidance

Troubleshooting Watchmaker activities can be done by checking various system logs. Logfile locations vary by OS and may vary by OS-version and cloud-provider. The per-OS, logfile discussions assume that you have executed Watchmaker per the relevant OSes’ direct-usage guidance:

	Linux Log-Files

	Windows Log-Files

 Linux Log-Files

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

Linux Log-Files

The logfiles to pay most attention to when running Watchmaker on Enterprise Linux distros (Red Hat, CentOS, Oracle Enterprise, etc.) are as follows:

	The /var/log/watchmaker/watchmaker.log Log-File

	The /var/log/watchmaker/salt_call.debug.log Log-File

	The /var/log/messages Log-File

	The /var/log/cloud-init.log Log-File

	The /var/log/cloud-init-output.log Log-File

The above are specifed in the order most-frequently used to determine execution issues.

Note that the troubleshooting discussions assume that watchmaker execution has been effected directly through the cloud-init service. If watchmaker is being executed by other means, the above files may have no relevance to issues encountered running watchmaker (the cloud-init.log and cloud-init-output.log), may not exist in the documented-locations (salt_call.debug.log and watchmaker.log) and may not even exist at all (watchmaker.log).

 The /var/log/watchmaker/watchmaker.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/watchmaker/watchmaker.log Log-File

This file tracks the top-level execution of the watchmaker configuration-utility. This file should always exist, unless:

	The provisioning-administrator has checked for the log before the utility has been downloaded and an execution-attempted. This typically happens if a watchmaker-execution is attempted late in a complex provisioning-process

	An execution-attempt wholly failed. In this case, check the logs for the watchmaker-calling service or process (e.g. cloud-init)

	The provisioning-administrator has not invoked watchmaker in accordance with the watchmaker project’s usage-guidance: if a different logging-location was specified (e.g., by adding a flag/argument like --log-dir=/tmp/watchmaker), the provisioning-administrator would need to check the alternately-specified logging-location.

	The provisioning-administrator invoked the watchmaker-managed content directly (e.g., using salt-call -c /srv/watchmaker/salt). In this scenario, only the content-execution may have been logged (whether logging was captured and where would depend on how the direct-execution was requested).

Typical Errors

	Bad specification of remotely-hosted configuration file. This will typically come with an HTTP 404 error similar to:

botocore.exceptions.ClientError: An error occurred (404) when calling the HeadObject operation: Not Found

Ensure that the requested URI for the remotely-hosted configuration file is valid.

	Attempt to use a protected, remotely-hosted configuration-file. This will typically come win an HTTP 403 error. Most typically, this happens when the requested configuration-file exists on a protected network share and the requesting-process doesn’t have permission to access it.

botocore.exceptions.ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden

Ensure that watchmaker has adequate permissions to access the requested, remotely-hosted configuration file.

	Remotely-hosted configuration file is specified as an s3:// URI without installation of boto3 Python module. This will typically come with an error similar to:

2023-06-22 14:26:59,192 [backoff][INFO][4908]: Backing off urlopen_retry(...) for 0.6s (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [backoff][ERROR][4908]: Giving up urlopen_retry(...) after 5 tries (urllib.error.URLError: <urlopen error unknown url type: s3>)
2023-06-22 14:26:59,803 [watchmaker.config][CRITICAL][4908]: Could not read config file from the provided value "s3://<BUKKIT>/<PREFIX>/config.yaml"! Check that the config is available.

Ensure that the boto3 Python module has been installed prior to attempting to execute watchmaker

 The /var/log/watchmaker/salt_call.debug.log Log-File

 [image: Powered by Plus3 IT Systems]
 [https://www.plus3it.com]

The /var/log/watchmaker/salt_call.debug.log Log-File

This is the log-file that captures the bulk of the SaltStack-related state-output. This file gets created when watchmaker has been able to successfully download all of its execution information. This file gets created shortly after this line appears in the /var/log/watchmaker/watchmaker.log file:

2023-06-15 11:13:27,378 [watchmaker.workers.base.SaltLinux][DEBUG][6407]: Command: /usr/bin/salt-call --local --retcode-passthrough --no-color --config-dir /opt/watchmaker/salt --log-file /var/log/watchmaker/salt_call.debug.log --log-file-level debug --log-level error --out quiet --return local state.highstate

Typically, the only errors that will appear here are the results of errors in the SaltStack formulae for the standard integrations. To see which modules may get logged into this file, look at the contents of the /srv/watchmaker/salt/formulas/ directory and then cross-reference those directories against the contents of the /srv/watchmaker/salt/states/top.sls file. To help interpret, a typical top.sls file’s contents is offered:

{%- set environments = ['dev', 'test', 'prod', 'dx'] %}

base:
 'G@os_family:RedHat':
 - name-computer
 - scap.content
 - ash-linux.vendor
 - ash-linux.stig
 - ash-linux.iavm
{%- if salt.grains.get('watchmaker:enterprise_environment') | lower in environments %}
 - join-domain
 - mcafee-agent
 - splunkforwarder
 - nessus-agent.elx.install
 # Recommend other custom states be inserted here
{%- endif %}
 - scap.scan

 'G@os_family:Windows':
 [...elided...]

In the above, these salt formulas will be executed unconditionally on RedHat-derivative systems:

	/srv/watchmaker/salt/formulas/name-computer-formula

	/srv/watchmaker/salt/formulas/ash-linux-formula[1]

Similarly, the contents of the following directories will be executed by watchmaker only if the environment specified in the watchmaker-invocation (the string-value after the -e flag) matches one of the elements in the environments list.

	/srv/watchmaker/salt/formulas/join-domain-formula

	/srv/watchmaker/salt/formulas/mcafee-agent-formula

	/srv/watchmaker/salt/formulas/nessus-agent-formula

	/srv/watchmaker/salt/formulas/splunkforwarder-formula

Similarly, the behavior of each of the above states’ executions will be governed by content specified under the /srv/watchmaker/salt/pillar directory hierarchy. This content is used to feed values into the parameter-driven SaltStack states enumerated in the .../formulas directories.

Typical Error Causes

The most frequent causes of errors, once watchmaker has caused Saltstack states to begin their execution, are errors encountered while running the individual enterprise-integration states. Typically, these errors are around stale configuration data (expired domain-join credentials for directory-integration or stale host/IP/port information for other services) or communication-issues between the OS that watchmaker is configuring and the service watchmaker is attempting to configure the instance to integrate: DNS resolution, host or network-level firewall rules, other transit-issues.

The next most frequent errors are already-existing configuration problems in the OS that watchmaker is configuring. These include things like:

	Failures accessing RPM repositories (especially problematic with repositories that require client-cert authentication where there are certificate-expiration problems between the RPM client and repository server)

	Too little storage in critical partitions

	The watchmaker activities running after something else has changed a resource-configuration that watchmaker expects to manage but finds the resource in an unanticipated state

The least frequent cause of errors is related to the SaltStack code itself. Usually, this is caught in pre-release testing, but “bugs happen”. While states are typically coded to try to gracefully handle errors encountered – they’ll typically still fail, but at least try to provide meaningful error-output. Usually, the “bugs happen” errors are resultant of environment-to-environment deltas that were not adequately specified to the code-maintainers or the requisite logic-branching was not able to be adequately exercised across the various environments.

For errors in enterprise-integration content, efforts have been undertaken to try to ensure those errors are adeq